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Weyl, Gödel and the Grundlagenstreit

Patrizio Contu

The present paper provides a reconstruction of Weyl’s and Gödel’s in-
terpretations of intuitionism, embedding the discussion in the context
of the Grundlagenstreit and the origins of constructive logic. The two
interpretations exhibit a striking affinity, and deviate substantially from
the mainstream view, usually referred to as Brouwer-Heyting-Kolmogorov
explanation of constructive proofs. Gödel’s objections to intuitionism
are fairly well-known, but the connection with Weyl appears to have
received little attention by commentators. The crux of the matter is the
concept and role of ideal elements in mathematics. The paper explains
how different interpretations of intuitionism deal with this problem.

The mainstream view on constructive semantics, as codified by the Brouwer-
Heyting-Kolmogorov (BHK) interpretation of logical constants, has not always
gone unchallenged. Gödel, and Weyl before him, had quite different opin-
ions on the way constructivism is to be understood. In particular, instead of
laying the blame on the law of excluded middle, they focused on the logic
of quantification, and posed heavy restrictions on the interaction between
quantifiers and propositional connectives, particularly negation. Both authors
relied heavily on choice functions. In the following, we outline Weyl’s and
Gödel’s main ideas, comparing them with each other and with mainstream
constructive logics. We also sketch some important connections with Hilbert,
as well as some puzzles around intuitionistic reductio ad absurdum.

1 Weyl on Constructivity

InWeyl (1918), HermannWeyl had already published a book-length attempt of
his own to build analysis on a predicative basis, but inWeyl (1921) hemodified
his former views and adhered to Brouwer’s intuitionism, although with some
substantial differences. What is of interest to us in this important paper is his
theory of quantification, that diverges from Brouwer’s views and from what
has become nowmainstream in constructive logic. We shall also refer toWeyl
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(2009) (whose original version was published in 1928) to reconstruct Weyl’s
approach. His theory could be broken down into the following principles.1

1. Actuality: An existential statement can only be asserted when an in-
stance has been found.

2. Abstraction: Existential quantifiers build no real statements but only
statement abstracts (Urteilsabstrakte), or abstracts for short. Universal
quantifiers build statement instructions (Urteilsanweisungen).

3. Constrained Inference: No inferences can be drawn from existential
abstracts. No logical inferences can lead to a statement instruction.

4. Negation: Negation cannot be applied to statement abstracts or instruc-
tions.

5. QuantifierNesting: An existential quantifier cannot occur in the scope
of a universal quantifier.

6. Propositional Innocence: Classical propositional logic is not to be
blamed for non-constructivity, for the latter arises from the logic of
quantification over infinite domains.

The basis of Weyl’s claims is undoubtedly the principle of actuality: construc-
tively, so the principle goes, I cannot assert an existence statement based on
the mere possibility of having a construction that I do not actually possess2:

Nur die gelungene Konstruktion kann uns die Berechtigung dazu
geben; vonMöglichkeit ist nicht die Rede.Weyl (1921, 55), original
emphasis

From this, Weyl concludes that existential statements are no real statements
because no state of affairs (Sachverhalt), hence no independent meaning, is
attached to them without the proof construction which has already taken
place. Weyl formulates this in rather colourful tones:

Man muß solche Dinge nicht von außen erwägen, sondern sich
innerlich ganz zusammenraffen und ringen um das “Gesicht”,
die Evidenz. Endlich fand ich für mich das erlösendeWort. Ein
Existentialsatz— etwa “es gibt eine gerade Zahl” — ist überhaupt
kein Urteil im eigentlichen Sinne, das einen Sachverhalt behauptet.

1 We render Weyl’s term “Urteil” (judgement) as “statement”.
2 This may be a refusal of Husserl’s identification of mathematical existence with possibility, cf. e.g.
Husserl (1939, 450).
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Existential-Sachverhalte sind eine leere Erfindung der Logiker.
“2 ist eine gerade Zahl”: das ist ein wirkliches, einem Sachverhalt
Ausdruck gebendes Urteil; “es gibt eine gerade Zahl” ist nur ein
aus diesem Urteil gewonnenes Urteilsabstrakt. (Weyl 1921, 54,
original emphasis)

Universally quantified statements, on the other hand, are general instructions
on how to build real statements. Given the general statement𝑚+1 = 1+𝑚, it
can be transformed by a uniform principle into a special case, e.g. 9+1 = 1+9:

Auch eine allgemeine Aussage weist nicht auf einen an sich
bestehenden Sachverhalt hin, sie ist nicht gemeint als logisches
Produkt unendlich vieler Einzelaussagen, sondern hypothetisch:
angewandt auf eine einzelne bestimmte vorliegende Zahl liefert
sie ein bestimmtes Urteil. (Weyl 2009, 72–73)

Therefore one could think of the application of statement instructions as a
sort of conversion in lambda calculus:

(∀𝑥𝐴(𝑥))(𝑎)B 𝐴(𝑎).

Since the instruction has to hold for all objects in the domain, for its appli-
cation it is not required to exhibit a previously constructed object 𝑎, but we
can simply use any denoting name. In Gentzenian terms, this justifies the
elimination rule

∀𝑥𝐴(𝑥) ⇒ 𝐴(𝑎).

The restriction on existential abstracts, on the other hand, clearly justifies the
introduction rule:

𝐴(𝑎) ⇒ ∃𝑥𝐴(𝑥).

In fact, these are the only quantifier rules that Weyl gives in Weyl (2009, 32).
Such is, then, the principle of constrained inference. Hence the questions
arise:

1. How do we draw consequences from an existential abstract?
2. How do we establish a universal statement instruction?

Weyl’s answer to the first question is simply that we do not. We cannot draw
conclusions froma pseudo-statement.Wheneverwewant to infer a conclusion
from ∃𝑥𝐴(𝑥), we have to resort to the statement𝐴(𝑎) that we have established,

doi: 10.48106/dial.v77.i2.03

https://doi.org/10.48106/dial.v77.i2.03


4 Patrizio Contu

and draw our inferences from that statement (cf. Weyl 2009, 72). As to the
second question, Weyl seems to be saying that general sentences are always
arrived at through domain-specific axioms, never by logic alone. In the case
of natural numbers, for example, the method of attaining universal sentences
will be mathematical induction, together with the generality provided by
definitions (Weyl 2009, 72). In spite of the duality between existential and
universal quantifier, which is reflected in the above rules,Weyl does not assign
the same status to abstracts and instructions. Instructions contain implicitly
infinitely many real statements, hence they are different from abstracts, which
are pseudo-statements (cf. Weyl 1921, 56).
Based on the previous principles, Weyl can now limit the applicability of

negation to quantified sentences. An abstract cannot be negated because it is
a pseudo-statement: just like one cannot draw inferences from it, one cannot
negate it either. In particular, the forbidden ¬∃𝑥𝐴(𝑥) can be written legiti-
mately as ∀𝑥¬𝐴(𝑥). ForWeyl, the existential quantifier is mathematically and
logically idle. The extension of the same principle to the universal quantifier
is prima facie puzzling. Weyl claims:

Die Negation einer allgemeinen Aussage über Zahlen wäre ein
Existentialsatz; da dieser nichtssagend ist, sind die allgemeinen
Urteile nicht negationsfähig. (Weyl 2009, 72)

Here he seems to be appealing to the law

¬∀𝑥𝐴(𝑥) ⇒ ∃𝑥¬𝐴(𝑥),

which is constructively invalid. It is probably the case that Weyl has classical
negation in mind, and the argument is meant to show that this negation does
not apply (see below). Weyl concludes that the law of excluded middle fails
for quantified sentences, since it cannot even be formulated (cf. Weyl (1921),
56).
The next principle that we need to examine is that of quantifier nesting (cf.

Weyl (1921), 57). According to Weyl, if we have proved ∀𝑥𝐴(𝑥, 𝑎), then we
can abstract legitimately and obtain ∃𝑦∀𝑥𝐴(𝑥, 𝑦). If, on the other hand, an
instruction is to be a rule that can be applied to all objects of the domain to
yield a real or proper statement:

(∀𝑥𝐴(𝑥))(𝑎)B 𝐴(𝑎),

Dialectica vol. 77, n° 2
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then it is clear that we cannot have the situation in which the result is a
pseudo-statement:

(∀𝑥∃𝑦𝐴(𝑥, 𝑦))(𝑎)B ∃𝑦𝐴(𝑎, 𝑦),

whence the scope restriction: an existential quantifier cannot occur within
the scope of a universal quantifier. Weyl’s way out consists in interpreting
∀𝑥∃𝑦𝐴(𝑥, 𝑦) as an abstract of an instruction rather than the opposite, i.e. by
using what would later come to be known as Skolem functions 𝑓 such that
∃𝑓∀𝑥𝐴(𝑥, 𝑓(𝑥)). This interpretation allows a legitimate conversion:

(∀𝑥𝐴(𝑥, 𝑓(𝑥)))(𝑎)B 𝐴(𝑎, 𝑓(𝑎)).

The principle of nesting reflects again the asymmetry between ∀ and ∃ sen-
tences.
Finally, it is implicit in Weyl’s analysis that the failure of constructivity is

due to quantification over infinite totalities rather than propositional logic. It
is only when classical negation is applied to quantifiers, that constructivity is
violated. But classical negation itself, within the scope of propositional logic,
is by itself harmless. We call this the principle of propositional innocence.
That this is actually at work inWeyl’s conception, can be seen from the fact
that Weyl (2009) defines propositional connectives by means of truth tables
(cf. Weyl 2009, 30). It is important to stress, however, that while all other
principles are clearly stated by Weyl, the principle of propositional innocence
is my own extrapolation and remains therefore hypothetical.3
Summarizing, for Weyl the existential quantifier is mathematically and log-

ically idle, whereas the universal quantifier is mathematically not idle (since
statement instructions are proved by means of mathematical definitions and
axioms), and logically idle to a lesser degree (as statement instructions imply
infinitely many proper statements). But in both cases, the crucial quantifier
rules that are subject to parameter restrictions have no place in deduction.
In particular, quantified sentences cannot be meaningfully negated. Weyl is
silent as to the question whether other logical connectives can be applied to
quantified sentences, presumably because their impact is not as crucial.

3 Brouwer himself stressed that the excluded middle is not problematic over finite domains, see e.g.
Brouwer (2020, 21). I am indebted to an anonymous referee for pointing this out in this context.

doi: 10.48106/dial.v77.i2.03

https://doi.org/10.48106/dial.v77.i2.03


6 Patrizio Contu

2 Hilbert’s Programme

Weyl’s paper had a profound influence on Hilbert and the formulation of his
programme. Hilbert held Weyl in high esteem and was deeply upset by his
allegiance to intuitionism. Accordingly, he took Weyl’s challenge seriously, as
testified by Hilbert (1922), where his words echoWeyl’s arguments closely:

Bei unendlich vielen Dingen hat die Negation des allgemeinen
Urteils ∀𝑥𝐴(𝑥) zunächst gar keinen präzisen Inhalt, ebensowenig
wie die Negation des Existentialurteils ∃𝑥𝐴(𝑥). Allerdings kön-
nen gelegentlich diese Negationen einen Sinn erhalten, nämlich,
wenn die Behauptung ∀𝑥𝐴(𝑥) durch ein Gegenbeispiel wider-
legt wird oder wenn aus der Annahme ∀𝑥𝐴(𝑥) bzw. ∃𝑥𝐴(𝑥) ein
Widerspruch abgeleitet wird. Diese Fälle sind aber nicht kon-
tradiktorisch entgegengesetzt; dennwenn𝐴(𝑥)nicht für alle𝑥 gilt,
wissen wir noch nicht, daß ein Gegenstand mit der Eigenschaft
Nicht-𝐴 wirklich vorliegt; ebensowenig dürfen wir ohne weit-
eres sagen: entweder gilt ∀𝑥𝐴(𝑥) bzw. ∃𝑥𝐴(𝑥) oder diese Behaup-
tungen weisen einen Widerspruch wirklich auf. Bei endlichen
Gesamtheiten sind “es gibt” und “es liegt vor” einander gleichbe-
deutend; bei unendlichenGesamtheiten ist nur der letztere Begriff
ohne weiteres deutlich. (Hilbert 1922, 155–156)

This passage shows that Hilbert had taken up many of Weyl’s views, and that
the negation that Hilbert had in mind is classical negation. The distinction
between different kinds of negation is brought to clarity in the later treatise
Hilbert and Bernays (1934, 33–34), where the example is given of an elemen-
tary arithmetic statement, say 𝑓(𝑚) = 𝑛, whose contradictory negation is
another statement to the effect that 𝑓(𝑚) = 𝑘, with 𝑛 ≠ 𝑘. Here we have two
claims on the result of a given procedure. They contradict each other exactly
in the sense that they only deviate in the claimed result, but they coincide
in the basic procedure. Now consider an existential statement. If we say that
there is no 𝑛 such that 𝐴(𝑛), we cannot mean it in the mild sense (in unschar-
fem Sinne) that such 𝑛 is not available, but rather in the sense that it cannot
have the property 𝐴. Hilbert and Bernays call this a sharpened negation (ver-
schärfte Negation). From a finitary standpoint, the mild or unsharp negation
is the exact contradictory of an existential statement, because it lies at the
same epistemological level of the negated statement (available/not available;
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exists/does not exist), whereas the sharpened negation works at an entirely
different level, that is, that of general laws:

Die Existentialaussage und ihre verschärfte Negation sind nicht,
wie eine elementare Aussage und ihre Negation, Aussagen über
die beiden allein in Betracht kommenden Ergebnisse einer und
derselben Entscheidung, sondern sie entsprechen zwei getren-
nten Erkenntnismöglichkeiten, nämlich einerseits der Auffind-
ung einer Ziffer von einer gegebenen Eigenschaft, andererseits
der Einsicht in ein allgemeines Gesetz über Ziffern. Daß eine von
diesen beiden Möglichkeiten sich bieten muß, ist nicht logisch
selbstverständlich.
(Hilbert and Bernays 1934, [33], original emphasis)

Thus the lack of a contradictory negation causes the law of excluded middle
to fail. The same holds true of general statements: we cannot assume, from
a finitistic point of view, that either 𝐴(𝑥) is true of all 𝑥 or that an 𝑥 can be
found that is not 𝐴 [cf.@hilbert_d-bernays:1934, 34].
There is an underlying agreement withWeyl on the problem of applying

negation to quantified statements, which ultimately does not translate, how-
ever, in Weyl’s prohibition. In fact, the doctrine of quantifiers does not obey
Weyl’s principle of abstraction: existential sentences do not express pseudo-
statements, but only statements with partial information (Partialurteile). On
the other hand, it is clear that Hilbert and Bernays fully subscribed to the
principle of propositional innocence, for the source of infinitary reasoning
was supposed to be quantification.
As in Weyl, Hilbert’s method of dealing with quantifiers is based on choice

functions. His initial approach made use of the 𝜏 term-forming operator, such
that 𝜏𝑥𝐴(𝑥) is to be interpreted as “the least likely to be𝐴”.4 The corresponding
axiom is

𝐴(𝜏𝑥𝐴(𝑥)) ⇒ 𝐴(𝑥).

He was soon to change this by adopting a dual operator 𝜀, with 𝜀𝑥𝐴(𝑥) to be
read as “the most likely to be 𝐴”, ruled by the axiom

𝐴(𝑥) ⇒ 𝐴(𝜀𝑥𝐴(𝑥)).

4 This wording derives from DeVidi and Kenyon (2006), but the same idea is clearly explained by
Hilbert himself.
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𝜀 behaves as a choice function, as the following example illustrates:

𝐴(𝑦1, ..., 𝑦𝑛, 𝑥) ⇒ 𝐴(𝑦1, ..., 𝑦𝑛, 𝜀𝑥𝐴(𝑦1, ..., 𝑦𝑛, 𝑥)).

With the 𝜀 operator, defining the quantifiers becomes easy:

∃𝑥𝐴(𝑥) ⇔ 𝐴(𝜀𝑥𝐴(𝑥))

∀𝑥𝐴(𝑥) ⇔ 𝐴(𝜀𝑥¬𝐴(𝑥)).

The latter amounts to
∀𝑥𝐴(𝑥) ⇔ 𝐴(𝜏𝑥𝐴(𝑥)),

since
𝜀𝑥¬𝐴(𝑥) = 𝜏𝑥𝐴(𝑥),

(the least likely to be 𝐴 is the most likely to be ¬𝐴), from which follows

𝐴(𝜀𝑥¬𝐴(𝑥)) ⇔ 𝐴(𝜏𝑥𝐴(𝑥)).

From these definitions, the full rules of quantification can be deduced
[cf.@hilbert_d-bernays:1939].
In summary, Hilbert and Bernays concluded that quantification, when

applied to infinite domains, is devoid of clear meaning, but instead of giving
up classical laws, they set out to prove that infinitary (or ideal) methods can
be justified indirectly, by proving the consistency of the system. The sense in
which a consistency proof solves the problem is explained as follows. Given
the lack in semantic transparency of infinitary mathematics, it is theoretically
possible that some infinitary results be shown to be invalid by finitarymethods,
in analogy to the discovery of the set-theoretic antinomies. But if a consistency
proof has been established, such contradiction between different methods can
never take place [cf.@hilbert_d-bernays:1934, 42]. Thus Hilbert ultimately
rejected all of Weyl’s principles apart from the principle of propositional
innocence.

3 Negation and Quantification

We have seen that the net effect of Weyl’s approach was to adopt classical
propositional logic and curtail the logic of quantification. Such diagnosis of
constructivity was very much at variance with Brouwer’s focus on negation

Dialectica vol. 77, n° 2
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in general, not limited to quantifiers.5 In keeping with Brouwer’s conception,
the essence of Heyting’s formulation of intuitionistic logic was the rejection of
the principle of propositional innocence, which in one stroke made it possible
to lift all other prohibitions imposed byWeyl.6With the notion of falsity as
reductio ad absurdum, negation could be applied to quantified sentences as
well, and the excluded middle failed on all sentences. In formalistic terms,
this amounts to identifying the source of non-constructive methods with
propositional logic, whereas the logic of quantification is now thought to be
innocent and can coincide with that of classical logic. As we shall see shortly,
this is not, strictly speaking, the case, for even quantifiers are interpreted
differently.
The problem now was the exact meaning of negation. Just by refusing

classical negation and defining ¬𝐴 ≔∶=≔ 𝐴 ⇒ ⊥, we still do not have
a clear answer as to what to do with absurdity ⊥. The principle on which
everyone agreed was constructive reductio ad absurdum: (𝐴 ⇒ 𝐵) ⇒ ((𝐴 ⇒
¬𝐵) ⇒ ¬𝐴), but the main point of controversy lay in the ex falso sequitur
quodlibet law: ⊥ ⇒ 𝐵. Constructively, it was implicit in Brouwer’s conception
that in order to justify a hypothetical judgement one has to provide at least
a method that transforms the antecedent into the consequent, and in the
case of ex falso it was not prima facie clear what such a method could be.
Before Heyting, Kolmogorov (1925) had defined a version of Brouwer’s logic
without the ex falso law, since he thought that this rule has no “intuitive
foundation” (Kolmogorov 1925, 419). Kolmogorov also provided the first
double-negation translation with classical logic, but his work did not achieve
wide circulation. A logical system with the positive fragment and constructive
reductio which does not contain the ex falso is now called minimal logic, after
Johansson (1937). Although the semantic justification of the ex falso was at
first unclear, ultimately Heyting’s acceptance of this principle, apparently
with the tacit agreement of Brouwer, became influential. Under Heyting’s
suggestion, Glivenko (1929) had included the ex falso in his axiom system,
and the final detailed version of intuitionistic logic, also featuring ex falso,
was published as Heyting (1930). It is telling that all these works focused on
propositional logic.
Kolmogorov (1932) provided a semantic justification of ex falso in terms

of problems and their solution. In general, for Kolmogorov a proposition 𝐴

5 However, Brouwer’s own comments onWeyl (1921), reported in Mancosu (1998, 119–122), do
not contain any remarks on the parts of the paper devoted to logic.

6 This is not to say that Heyting devised his formulation as an explicit rejoinder to Weyl.
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represents a problem, and a proof of 𝐴 represents its solution. What is, then,
the status of a problem that we know unsolvable? Kolmogorov considers the
following problem: under the assumption that the number 𝜋 is rational, prove
that also the number 𝑒 can be expressed as a rational number. He remarks
that

Die Voraussetzung der […] Aufgabe [ist] unmöglich, und folglich
ist die Aufgabe selbst inhaltslos. Der Beweis, daß eine Aufgabe in-
haltslos ist, wird weiter immer als ihre Lösung betrachtet werden.
(Kolmogorov 1932, 59)

In the case of ex falso, represented as ¬𝐴 ⇒ (𝐴 ⇒ 𝐵), we have as a simple
consequence that if we have proved the premiss, then the resulting implication
is devoid of content and therefore solved:

Sobald ¬𝐴 gelöst ist, [ist] die Lösung von 𝐴 unmöglich und die
Aufgabe 𝐴 ⇒ 𝐵 inhaltslos. (Kolmogorov 1932, 62)

Thus we do not need a specific construction to prove 𝐵 from ⊥, for the simple
reason that the premiss can never be solved. This view is now the established
interpretation (cf. Troelstra and van Dalen 1988, vols. I, 10). Observe that ex
falso is similar to Hilbert’s 𝜏 operator: if the most unlikely to be true is actually
true, then anything else is true.
The somewhat non-constructive flavour of ex falso can be gleaned from the

intuitionistic law (¬𝐴 ∨ 𝐵) ⇒ (𝐴 ⇒ 𝐵), whose proof is based on ex falso and
a fortiori, as can be seen from the derivation in natural deduction:

[¬𝐴 ∨ 𝐵]

[¬𝐴] [𝐴]
⊥
𝐵

𝐴 ⇒ 𝐵
[𝐵]

𝐴 ⇒ 𝐵
𝐴 ⇒ 𝐵

(¬𝐴 ∨ 𝐵) ⇒ (𝐴 ⇒ 𝐵)

The law has a non-constructive flavour because it makes the meaning of
intuitionistic implication dangerously close to that of classical logic: a suf-
ficient condition for an implication is that either the antecedent is false, or
the consequent is true. Heyting, Kolmogorov, and the standard theory af-
ter them, all assume that ⊥ can never be proved, and therefore no specific
construction is needed to obtain an arbitrary proposition from it. Johansson,

Dialectica vol. 77, n° 2
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on the other hand, points out that we may not know whether a proof of ⊥
could be obtained, hence in general we could obtain one, if our axioms are
inconsistent (cf. Johansson 1937, 128), and then we would have the burden of
providing a specific construction to prove any 𝐵 from it. Heyting was aware of
the somewhat problematic status of ex falso. In later years, referring to this
law, he stressed the open-ended character of intuitionistic mathematics:

Itmust be remembered that no formal system can be proved to rep-
resent adequately an intuitionistic theory. There always remains
a residue of ambiguity in the interpretation of the signs, and it
can never be proved with mathematical rigour that the system
of axioms really embraces every valid method of proof.(Heyting
1956, 102)

However, if the previous reasoning is correct, things are much worse: it would
mean that as long as a contradiction cannot be proved, we are safe with
the standard justification of ex falso (i.e. no specific construction is needed),
whereas if there is a proof of a contradiction, then we are in a situation in
which we have to exhibit a specific transformation that from a contradiction
proves any proposition, whichwemay not be able to produce. It is no escape to
say that we do have the inference rule, because that is precisely what we have
to justify semantically. Hence it appears that, if a contradiction is produced,
ex falsomay well cease to be valid. We might call this the paradox of absurdity.
Having ex falso yields an elegant mathematical symmetry between truth and
falsity, since both ⊥ ⇒ 𝐴 and 𝐴 ⇒ ⊤ are valid for any 𝐴. But there is a price
to pay in terms of conceptual justification. This appears to be an important
open question for constructive semantics, but we will not discuss it further in
this paper.
The role of quantification in constructive logic remains to be considered.

We have seen that the original formalization of intuitionistic logic turned
upon propositional operators, in order to work out the rules for negation.
What is then the role of quantification? It turns out that the crucial issue is
with the existential quantifier.We have seen howWeyl rejected an elimination
rule for the existential quantifier, because that would break the principle of
actuality of proofs. In Hilbert’s terms, it would introduce ideal elements. In
keeping with this idea, in a classical system, one can add a rule of existential
instantiation based on Hilbert’s 𝜀 operator:

doi: 10.48106/dial.v77.i2.03
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∃𝑥𝐴(𝑥)
𝐴(𝜀𝑥𝐴(𝑥)).

Gentzen (1935), on the other hand, formulated the elimination rule for ∃ as

Π1

∃𝑥𝐴(𝑥)

[𝐴(𝑥/𝑎)]
Π2
𝐶

𝐶

(where 𝑎 does not occur in 𝐶). Gentzen’s rule is intuitionistically valid,
whereas existential instantiation is not, as the following example demon-
strates:

[𝐴] 𝐴 ⇒ ∃𝑥𝐵(𝑥)
∃𝑥𝐵(𝑥)
𝐵(𝜀𝑥𝐵(𝑥))

𝐴 ⇒ 𝐵(𝜀𝑥𝐵(𝑥))
∃𝑥(𝐴 ⇒ 𝐵(𝑥))

Since the only laws that we are using are those for implication and the
existential quantifier, if one accepts the constructive meaning of the implica-
tion rules, it follows that the problem is due to existential instantiation. This
shows that Weyl’s misgivings about drawing consequences from existentiallly
quantified statements were not unfounded. It is now well-known that if one
adds an extensionality condition for the 𝜀 operator:

∀𝑥(𝐴(𝑥) ⇔ 𝐵(𝑥)) ⇒ 𝜀𝑥𝐴(𝑥) = 𝜀𝑥𝐵(𝑥),

even the Law of Excluded Middle can be derived (this was first proved by
Diaconescu in the context of topos theory). ThusWeyl’s use of choice functions
defined on objects in a suitable domain, as in ∃𝑓∀𝑥𝐴(𝑥, 𝑓(𝑥)), cannot be
extended to choice functions defined on the property 𝐴(𝑥) itself, as in 𝜀𝑥𝐴(𝑥),
without overstepping the bounds of constructivism, as Weyl rightly saw.
The above example also shows that the quantifier rules are crucial in char-

acterising constructivism.7

7 The standard explanation of constructive proofs, known as Brouwer-Heyting-Kolmogorov (BHK)
interpretation, provides a non-classical account for all logical constants, hence it does not rely on
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4 Gödel’s Functional Interpretation

There are striking similarities betweenWeyl’s analysis of constructivity and
Gödel’s critique of intuitionistic logic in the 1930s. Whether Gödel was ac-
quainted with Weyl’s papers, however, is not clear, at least to this author.
WhereasWeyl wrote on these topics before the formulation of the BHK, Gödel
had that and the formalization of intuitionistic logic before his eyes. Here we
focus on Gödel’s early discussions rather than the published version of his
system (Gödel 1958). In Gödel (1933, 51–53) and Gödel (1938, 90), he states
the following principles.

1. Finite Generation The universal quantifier can only be applied to
totalities whose elements are finitely generated (e.g. natural or rational
numbers).

2. Existential Dispensability Existential statements are mere abbrevia-
tions of statements including awitness of the proved property, otherwise
they are dispensable. Therefore the existential quantifier should not be
a primitive symbol.

3. Quantifier ScopeNegationmust not be applied to universal statements,
because that would require a dependency on existential statements,
which are dispensable. The only admissible meaning of universal nega-
tion is the availability of a counterexample. Gödel (1938, 90) extends
the negation restriction to all propositional connectives.

4. Constrained Inference Existential statements are only governed by
the introduction rule. Universal statements cannot be proved by logical
means.8

propositional logic alone.While not a formal definition, this interpretation remains the conceptual
reference for mainstream constructivism. We report its clauses for the reader’s convenience:

1. BHK(∧): 𝜋 proves𝐴∧ 𝐵 iff 𝜋 =< 𝜋1, 𝜋2 > where 𝜋1 proves𝐴 and 𝜋2 proves 𝐵.
2. BHK(∨): 𝜋 proves𝐴∨ 𝐵 iff 𝜋 proves𝐴 or 𝜋 proves 𝐵.
3. BHK(⇒):𝜋 proves𝐴 ⇒ 𝐵 iff 𝜋 is an effective function (construction) 𝜆𝑥.𝜙(𝑥) such that

for each proof 𝜌 of 𝐴, 𝜙(𝜌) proves 𝐵.
4. BHK(∃): 𝜋 proves (∃𝑥 ∈ 𝐷)𝐴(𝑥) iff 𝜋 =< 𝑎 ∈ 𝐷,𝜌 > where 𝜌 proves𝐴(𝑎).
5. BHK(∀): 𝜋 proves (∀𝑥 ∈ 𝐷)𝐴(𝑥) iff 𝜋 is an effective function (construction) 𝜆𝑥.𝜙(𝑥)

such that for each 𝑎 ∈ 𝐷, 𝜙(𝑎) proves𝐴(𝑎).
6. BHK(¬): 𝜋 proves ¬𝐴 iff 𝜋 is an effective function (construction) 𝜆𝑥.𝜙(𝑥) such that for

each proof 𝜌 of 𝐴, 𝜙(𝜌) proves ⊥, where ⊥ is a propositional constant of which nothing
constitutes a proof.

8 I quote:

doi: 10.48106/dial.v77.i2.03

https://doi.org/10.48106/dial.v77.i2.03


14 Patrizio Contu

5. Decidability Only decidable relations and computable functions are
allowed constructively.

The principles of existential dispensability, quantifier scope and constrained
inference are obviously very close toWeyl’s analysis. There is no counterpart of
the principle of finite generation inWeyl, whereas the principle of decidability
restricts the principle of propositional innocence: we can only apply classical
inferences because we are using decidable predicates. From Gödel’s principle
of quantifier scope it also follows that the definition of negation as reductio ad
absurdum is not generally admissible, because it allows us to deny a universal
statement even in the absence of a counterexample. Furthermore, from the
principle of finite generation it follows that the BHK definition of implica-
tion, and hence also of negation, is not admissible because it quantifies over
all proofs of the antecedent, and constructive proofs are not a well-defined
domain of quantification in the sense of being finitely generated (cf. Gödel
1933, 52–53).
The remark on reductio ad absurdum is deeply ingrained in Gödel’s analysis

of intuitionism. Gödel (1933) extending a result of Glivenko, that classical
arithmetic can be embedded, through a suitable translation, into Heyting
arithmetic, thereby showing that intuitionistic arithmetic, contrary to expec-
tations, is more general than classical arithmetic. Gödel explains this result
thus:

Der Grund dafür liegt darin, daß das intuitionistische Verbot,
Allsätze zu negieren und reine Existentialsätze auszusprechen,
in seiner Wirkung dadurch wieder aufgehoben wird, daß das
Prädikat der Absurdität auf Allsätze angewendet werden kann,
was zu formal den gleichen Sätzen führt, wie sie in der klassis-
chen Mathematik behauptet werden. Wirkliche Einschränkun-
gen scheint der Intuitionismus erst für die Analysis und Men-
genlehre zu bringen, doch sind diese nicht durch Ablehnung des
Tertiumnon datur, sondern der imprädikativen Begriffsbildungen
bedingt. (Gödel 1932, 294)

It follows that we are left with essentially only one method for proving general
propositions, namely, complete induction applied to the generating process of our
elements. (Gödel 1933, 51)
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The same argument is reiterated in Gödel (1941, 190). Gödel (1941) builds
upon the above principles to provide a positive account of the strengthened
constructivism that he envisioned and that was not satisfied by Heyting’s
theory. The official formulation of this account was to be Gödel (1958), where
Gödel dropped the foundational discussion of intuitionism and focused on
the proof of relative consistency.
Gödel’s approach consists in defining a system T extending recursive num-

ber theory by admitting computable functionals of finite type, i.e. typed func-
tionals such as

𝐹𝜍→𝜏(𝑓𝜍) = 𝑔𝜏.

On the logical side, the first consequence of the principle of indispensabil-
ity and quantifier scope is that sentences can only be in prenex form and
with universal quantifiers only (cf. Gödel 1941, 192). Existential quantifiers
are accepted as abbreviations, only governed by the introduction rule and
therefore eliminable:

An existential assertion can only appear as the last formula of
a proof and the last but one formula of the proof must give the
corresponding construction. (Gödel 1941, 193)

Gödel remarks that this is not an explicit definition of the existential quantifier,
but

a definition of use, which states how propositions containing the
new symbol are to be handled in proofs, i.e. from which premises
they can be inferred, namely these [premises of the introduction
rule], and what can be inferred from them, namely nothing. Now
such an implicit definition must satisfy the requirement of elim-
inability. To be more exact: If a proposition not containing the
new symbol can be proved with the help of of the new symbol, it
must be demonstrable without the help of the new symbol (oth-
erwise we would not have to do with a definition but with a new
axiom). But this requirement is trivially satisfied by this manner
of introducing the existential quantifier. (Gödel 1941, 193)

Apart from the total overlap with Weyl’s conception of the existential quanti-
fier, we can observe that Gödel is stressing an important point here, that is,
a definition of use based on the introduction rule alone makes the defined
operator trivially eliminable.

doi: 10.48106/dial.v77.i2.03
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From the previous discussion it follows that the general form of a state-
ment is ∃𝐱∀𝐲𝐴(𝐱, 𝐲), with 𝐴(𝐱, 𝐲) quantifier-free and where 𝐱 and 𝐲 are se-
quences of individual or functional variables. The situation is strongly remi-
niscent of Weyl’s principle of quantifier nesting. As for Weyl, the strategy for
obtaining sentences in the desired form consists in the use of choice func-
tions. For example, ∀𝑧𝐴(𝑧), with 𝐴(𝑧) ≡ ∃𝑥∀𝑦𝐵(𝑥, 𝑦, 𝑧), is interpreted in T as
∃𝑓∀𝑧∀𝑦𝐵(𝑓(𝑧), 𝑦, 𝑧). Implication ofT-formulas ∃𝑥∀𝑦𝐴(𝑥, 𝑦) and ∃𝑢∀𝑣𝐵(𝑢, 𝑣)
is not a formula of T:

∃𝑥∀𝑦𝐴(𝑥, 𝑦) ⇒ ∃𝑢∀𝑣𝐵(𝑢, 𝑣), (1)

but, according to Gödel’s analysis, it can be so transformed by first observ-
ing that given an 𝑥 as in the antecedent, a 𝑢 as in the consequent can be
constructed, and such correlation should be given by a computable function
𝑓:

∃𝑓∀𝑥(∀𝑦𝐴(𝑥, 𝑦) ⇒ ∀𝑣𝐵(𝑓(𝑥), 𝑣)). (2)

Furthermore, the implication within brackets can be interpreted as saying
that a counterexample of the consequent implies a counterexample of the
antecedent, which, by functional dependence, becomes:

∃𝑔∀𝑣(¬𝐵(𝑓(𝑥), 𝑣) ⇒ ¬𝐴(𝑥, 𝑔(𝑣))) (3)

Now the internal implication is decidable because it is quantifier-free and
all relations are decidable, hence we can apply the classical contrapositive to
obtain

∃𝑔∀𝑣(𝐴(𝑥, 𝑔(𝑣)) ⇒ 𝐵(𝑓(𝑥), 𝑣)) (4)

and by reintroducing the external quantifiers

∃𝑓∀𝑥∃𝑔∀𝑣(𝐴(𝑥, 𝑔(𝑣)) ⇒ 𝐵(𝑓(𝑥), 𝑣)) (5)

we only need to apply the axiom of choice again to obtain the final form:

∃𝑓∃𝑔∀𝑥∀𝑣(𝐴(𝑥, 𝑔(𝑥, 𝑣)) ⇒ 𝐵(𝑓(𝑥), 𝑣)). (6)

This rather laborious process of application of choice functions, when ex-
tended to all operators,9 allows Gödel to prove his fundamental result: if a

9 Gödel can define negation as reductio ad absurdum: ¬𝐴 ≔ 𝐴 ⇒ ⊥, because now negation is
never applied to quantifiers.
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sentence is provable in Heyting arithmetic, then it is provable in T. With this
result, Gödel is able to conclude that the sense in which intuitionistic logic, as
applied to number theory, is constructive, consists in the fact that any provable
existential statement of intuitionistic number theory is translatable into a
provable existential statement of T for which, by construction, a witness 𝑡 is
readily available (cf. Gödel 1941, 199). Gödel was confident that his approach
could be extended to other branches of constructive mathematics:

If you apply intuitionistic logic in any branch of mathematics
you can reduce it to a finitistic system of this kind under the sole
hypothesis that the primitive functions and primitive relations of
this branch of mathematics are calculable, respectively, decidable.
[…] This finitistic system […] is always obtained by introducing
functions of higher types analogous to these, with the only differ-
ence that the individuals upon which the hierarchy of functions
is built up are no longer the integers but the primitive objects
of the branch of mathematics under consideration. (Gödel 1941,
195–196)

Summarizing, Gödel saw that Heyting’s formalization of intuitionistic logic
and mathematics contained some prima facie non-constructive methods of
proof, not unlike those that we identified in the previous section, giving the
possibility of proving an existential statement without a constructed witness,
e.g. by applying the elimination rule for the existential quantifier, or the reduc-
tio ad absurdum. The significance of his result, as Gödel himself remarked,
is that at least as far as number theory is concerned, intuitionistic logic is
constructively sound, because a witness can always be recovered. Gödel’s
system T could perhaps be viewed as a particular implementation of Weyl’s
analysis of constructivity, which is not to say, of course, that Weyl would have
agreed with the details of Gödel’s approach.

5 Conclusions

One crucial problem for constructivism consists in being able to provide a
witness for the proof of an existential statement. Weyl and Gödel intended to
address this problem by curtailing the deductive strength of the existential
quantifier, and more specifically, by forsaking the elimination rule. This is
because statements derivable by the elimination rule deviate from the re-
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quirement of actuality of constructions, being mere possibilities and thereby
introducing a potentially non-constructive (“ideal”) element in inference.
In our discussion, we have compared three main positions:

1. Intuitionism of Brouwer and Heyting: a constructive proof is not con-
strained by the availability of actual witnesses, for it suffices to be able
in principle to compute them. The proof-theoretic systems introduced
by Gentzen follow this paradigm, in which all of deductive rules corre-
sponding to Heyting’s logic are admissible, because witnesses can be
obtained by cut elimination or normalization.

2. Hilbert’s finitist standpoint: ideal elements, including those posited by
classical mathematics, are harmless as long as they can be justified by a
finitary consistency proof. This can be understood at least partly as an
attempt tomeet the challenge of intuitionismwithout rejecting classical
logic.

3. Strict constructivism as defined byWeyl and Gödel: a truly constructive
proof cannot include any ideal elements, and the notion of proof itself
should follow the same standards. Prima facie, similar restrictions have
a potential for reducing the deductive power of constructive theories,
but in fact, Gödel’s approach is only partially revisionistic: his view is
that while his variety of constructivism can be more restrictive in gen-
eral, when confined to a theory built along the lines of T for arithmetic
(i.e. based exclusively on computable functions and decidable predi-
cates), the full power of Heyting’s logic can be recovered (see Gödel
1941, 195–196).

There is now one looming question: when it comes to ideal elements, how
strict can constructivism be? In particular, can Gödel claim to have succeeded
in providing a firmer conceptual foundation for constructivism?
One crucial problem is whether Gödel’s computable functionals can really

be conceptualized without breaking the principle of quantifier scope, as for-
mulated byWeyl and himself,10 since functionals, like any function, require
a ∀∃ condition: 𝑓 is a function such that for each argument, it computes a
value, or ∀𝑥∃𝑦(𝑓(𝑥) = 𝑦). But if we transform that into its Skolem form, the
result is not quite explanatory: ∃𝑔∀𝑥(𝑓(𝑥) = 𝑔(𝑥)). That is, 𝑓 is a function that
behaves exactly like some other function 𝑔. One can perhaps say that there is
no need for such an explanation within T, but only for our understanding of

10 I am indebted to an anonymous referee for raising this type of difficulty.
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T in the metatheory. This, however, would make Gödel’s conceptual reform
of constructivism much less convincing, for it would rely on an implicit grasp
of T which does not follow T’s own principles.
More generally, are higher-order concepts such as functionals to be clas-

sified as ideal elements? A related objection has been leveled by Tait (2006).
According to Tait, Gödel’s replacement of proofs by computable functionals
is unwarranted, on the grounds that determining that a functional is com-
putable may involve resources of arbitrary complexity, and in general, all of
Heyting arithmetic. The rationale behind Tait’s main argument is that con-
structivity should be defined in terms of methods of reasoning, rather than on
the assumption of computability and decidability. Gödel’s later view appears
to have been that ultimately, both the finitist standpoint and constructive
logic are forced to include ideal elements and drop the assumption that proof
constructions must be intuitively given spatiotemporal arrangements (see
Gödel 1958, 244).
In sum, the question of the conceptual semantics of constructivism remains

open, as the discussion of ex falso also illustrates. Standard constructivism
attempts to strike a balance between the ideality of classical logic and the
finitist quest for actuality, and while a fully satisfactory balance seems to
be hard to attain, the foundational research conducted along the way has
provided a rich account of the logical phenomena involved.*
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