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Actual Causation

Ho1LGER ANDREAS & MARIO GUNTHER

We put forth an analysis of actual causation. The analysis centers on
the notion of a causal model that provides only partial information as
to which events occur. The basic idea is this: ¢ causes e only if there
is a causal model that is uninformative on e and in which e will occur
if ¢ does. We show that our analysis captures more causal scenarios
than any account that tests for counterfactual dependence under certain
contingencies.

We analyse causation between token events. Here is the gist of the analysis:
an event c is a cause of another event e only if both events occur, and—after
taking out the information whether or not e occurs—e will occur if ¢ does.
We will show that the analysis successfully captures a wide range of causal
scenarios, including overdetermination, preemption, switches, and scenarios
of double prevention. This set of scenarios troubles counterfactual accounts
of actual causation. Even sophisticated counterfactual accounts still fail to
deal with all of its members. And they fail for a principled reason: to solve
overdetermination and preemption, they rely on a strategy which gives the
wrong results for switches and a scenario of double prevention. Our analysis,
by contrast, is not susceptible to this principled problem.

Counterfactual accounts try to analyse actual causation in terms of counter-
factual dependence. An event e counterfactually depends on an event c if and
only if (iff), were ¢ not to occur, e would not occur. Among the accounts in the
tradition of Lewis (1973), counterfactual dependence between two occurring
events is taken to be sufficient for causation.' That is, an occurring event c is a
cause of a distinct occurring event e if, were c not to occur, e would not occur.
Counterfactual accounts thus ask “what would happen if the putative cause
were absent?” Under this counterfactual assumption they claim causation if
the presumed effect is absent as well.

See Lewis (1973, 2000), Ramachandran (1997), Hitchcock (2001), Yablo (2002), Woodward (2003),
Hall (2004, 2007), Halpern and Pearl (2005), Halpern (2015), and many others.
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Overdetermination is troublesome for counterfactual accounts. Consider
the scenario depicted in Figure 1.
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Figure 1:

Neuron c and neuron a fire. The firing of each of ¢ and a alone suffices to
excite neuron e. Hence, the common firing of ¢ and a overdetermines e to fire.
Arguably, the firing of c is a cause of e’s excitation, and so is the firing of a.

What would have happened had ¢ not fired? If ¢ had not fired, e would
have been excited anyways. After all, a would still have fired. Hence, as is
well known, c is not a cause of e on Lewis’s (Lewis 1973) account. More
sophisticated accounts solve the scenario of overdetermination as follows: c’s
excitation is a cause of ¢’s firing because e’s firing counterfactually depends
on ¢’s excitation if a were not to fire. The non-actual contingency that a does
not fire reveals a hidden counterfactual dependence of the effect e on its cause
c. The general strategy is to test for counterfactual dependence under certain
contingencies, be they actual or non-actual. We call counterfactual accounts
relying on this strategy ‘sophisticated’.”

Numerous sophisticated accounts analyse causation relative to a causal
model. A causal model represents a causal scenario by specifying which events
occur and how certain events depend on others. Formally, a causal model
(M, V) is given by a variable assignment V and a set M of structural equations.
For the above scenario of overdetermination, V' may be given by the set {c, a, e},
which says that all neurons fire. M is given by {e = ¢V a}, which says that e fires
iff ¢ or a does. In this causal model, we may set the variable c to —i¢, a to —a
and propagate forward the changes effected by these interventions. Given that

Sophisticated counterfactual accounts are, for example, provided by Ramachandran (1997),
Hitchcock (2001), Yablo (2002), Woodward (2003, chap. 2.7), Halpern and Pearl (2005), Hall
(2007), and Halpern (2015).
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—ic and —a, the structural equation determines that —e. The equation tells us
that e would not have fired, if ¢ had not fired under the contingency that a had
not fired. Hence, the above solution of overdetermination can be adopted: c is
a cause of e (relative to the causal model) because e counterfactually depends
on ¢ if —a is set by intervention.?

We solve the problem of overdetermination in a different way. The idea is
this: remove enough information about which events occur so that there is no
information on whether or not a putative effect occurs; an event c is then a
cause of this effect only if—after the removal of information—the effect will
occur if ¢ does.

We use causal models to implement the idea. The result of the informa-
tion removal is given by a causal model (M, V') that provides only partial
information as to which events occur, but complete information about the
dependences between the events. To outline the preliminary analysis: cis a
cause of e relative to a causal model (M, V) iff

1. cand e are true in (M, V), and
2. thereis V' C Vsuch that (M, V') contains no information as to whether
e is true, but in which e will become true if ¢ does.

By these conditions, we test whether an event brings about another event in a
causal scenario. Causation is here actual production.

Why is c’s excitation a cause of e’s firing in the overdetermination scenario?
Take the causal model (M, V') that contains no information about whether or
not the effect e occurs:

Here, a neuron is dotted iff V' contains no information as to whether the
neuron fires or not. Since all neurons are dotted, the causal model contains

3 Sophisticated accounts that rely on causal models are, for example, provided by Hitchcock (2001),
‘Woodward (2003, chap. 2.7), Halpern and Pearl (2005), Hall (2007), and Halpern (2015).

doi: 10.48106/dial.v76.i1.01
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no information on which neurons fire. But it still contains all the information
about dependences among the neurons, as encoded by the structural equation
of the overdetermination scenario. Let us now intervene such that ¢ becomes
excited:

()

The structural equation is triggered and determines e to fire. Hence, c’s
excitation is a cause of e’s firing on our analysis. The overdetermination
scenario is solved without counterfactually assuming the absence of the cause
and without invoking any contingency.

It should be noted that the recent counterfactual theories of Gallow (2021)
and Andreas and Giinther (2021b) are not sophisticated in our sense: they
do not test for counterfactual dependence under certain contingencies. And
so they are not susceptible to the principled problem. Indeed, both theories
solve the set of scenarios that troubles sophisticated accounts. The analysis of
Andreas and Glinther (2021b) relies on a removal of information just like the
analysis proposed here, and can thus be seen as its counterfactual counterpart.
We will briefly and favourably compare our analysis to its counterfactual
counterpart in the Conclusion.

In what follows, we refine our analysis, apply it to causal scenarios, and
compare it to counterfactual accounts. In section ??, we introduce our account
of causal models. In section ??, we state a preliminary version of our analysis
and explain its rationale. We apply this analysis to various causal scenarios
in section ??. In response to certain switching scenarios, we amend our pre-
liminary analysis by a condition of weak difference making. In section ??, we
state the final version of our analysis. In section ??, we compare our analysis
to the extant counterfactual accounts. section ?? concludes the paper.

Dialectica vol. 76, n° 1
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1 Causal Models

In this section, we explain the basic concepts of causal models. Our account
parallels the account of causal models in Halpern (2020). Unlike Halpern,
we introduce structural equations as formulas and not as functions. Another
difference is that our account is confined to binary variables, the values of
which are represented by literals.# We will see shortly that these modelling
choices allow us to define causal models in a straightforward way, in particular
causal models that carry only partial information as to which events occur. In
the appendix, we supplement the explanations of the core concepts of causal
models with precise definitions.

Our causal models have two components: a set M of structural equations
and a consistent set V of literals. Where p is a propositional variable, p is
a positive literal and —1p a negative literal. We give literals a semantic role.
The literals in V denote which events occur and which do not, that is, which
events and absences are actual. p € V means that the event corresponding to
p occurs. —ip € V, by contrast, means that no token event p of the relevant
type occurs. Since the set of literals is consistent, it cannot be that both p and
—1p are in V. Arguably, an event cannot both occur and not occur at the same
time.

A structural equation denotes whether an event would occur if some other
events were or were not to occur. Where p is a propositional variable and ¢ a
propositional formula, we say that

p=¢

is a structural equation. Each logical symbol of ¢ is either a negation, a dis-
junction, or a conjunction. ¢ can be seen as a truth function whose arguments
represent occurrences and non-occurrences of events. The truth value of ¢
determines whether p or —p.

Consider the scenario of overdetermination depicted in Figure 1. There
are arrows from the neurons c and a to the neuron e. The arrows represent
that the propositional variable e is determined by the propositional variables
c and a. The specific structural equation of the overdetermination scenario is
e = c V a. This equation says that e occurs iff ¢ or a does. A set of structural
equations describes dependences between actual and possible token events.

4 With a few modifications, both the framework and the analysis can be extended to non-binary
variables.

doi: 10.48106/dial.v76.i1.01
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For readability, we will represent causal models in two-layered boxes. The
causal model of the overdetermination scenario, for example, is given by
{e = cval,{c, a,e}). We will depict such causal models (M, V) in a box, where
the upper layer shows the set M of structural equations and the lower layer
the set V of actual literals. For the overdetermination scenario, we obtain:

e=cVvVa
ca,e

We say that a set V of literals satisfies a structural equation p = ¢ just in
case both sides of the equation have the same truth value when plugging in
the literals in V. In the case of overdetermination, the actual set of literals
satisfies the structural equation. By contrast, the set of literals {c, a, e} does
not satisfy e = ¢ v a. When plugging in the literals, the truth values of e and
¢V a do not match. We say that a set V of literals satisfies a set M iff V satisfies
each member of M.

The structural equations and the literals determine which events occur and
which do not occur in a causal model. This determination can be expressed by
a relation of satisfaction between a causal model and a propositional formula.

DEFINITION 1. (M, V) satisfies ¢

(M, V) satisfies ¢ iff ¢ is true in all complete sets V° of literals that
extend V and satisfy M. A set V¢ of literals is complete iff each
propositional variable (in the language of M) is assigned to a truth
value by V.

If V is complete, this definition boils down to: (M, V) satisfies ¢ iff V satisfies
@, or V does not satisfy M. Provided V is complete, (M, V) satisfies at least one
of ¢ and —¢ for any formula ¢.

Our analysis relies on causal models that contain no information as to
whether or not an effect occurs. We say that a causal model (M, V) is unin-
formative about a formula ¢ iff (M, V) satisfies none of ¢ and —¢. Note that
(M, V) cannot be uninformative on any formula if V'is complete.

In the scenario of overdetermination, the causal model (M, V) is unin-
formative on e for V = @. There are four complete extensions that satisfy
M = {e = ¢V a}. One of these is {—c, 7a, ne}. Hence, (M, V) does not satisfy e.
Similarly, (M, V) does not satisfy —e. There is a complete extension of V that
satisfies M but fails to satisfy —e. The actual set {c, a, e} of literals, for example,
but also the sets {c, —a, e} and {—c, a, e}. The structural equation constrains the

Dialectica vol. 76, n° 1
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overdetermination scenario to four possible cases. These cases are expressed
by the complete sets of literals which satisfy M.

Why is (M, V) not uninformative on e for V' = {a}? Well, there is no complete
extension of V that satisfies the structural equation in M but fails to satisfy
e. There are only two such complete extensions: {c, a,e} and {—c, a,e}. If a
remains in the set V of literals, e is determined independent of whether or
not ¢ occurs.

It remains to introduce interventions. Recall that a structural equation
p = ¢ determines the truth value of the variable p if certain variables q
occurring in ¢ are given truth values by the literals in V. To represent an
intervention that sets p to one of the truth values, we replace the equation
p = ¢ by the corresponding literal p or —p. We implement such interventions
by the notion of a submodel. M; is a submodel of M relative to a consistent
set I of literals just in case M; contains the literals in I and the structural
equations of M for the variables which do not occur in I. In symbols,

Mi={(p=¢)eM|pgland-p&I}Ul

We denote interventions by an operator [-] that takes a model M and a
consistent set of literals I, and returns a submodel. In symbols, M[I] = Mj.
In the overdetermination scenario, for instance, we may intervene on M =
{e = ¢ v a} by {—a}. This yields: M[{—a}] = {—a,e = c v a}. The causal model
(M{~q), @) satisfies —a, and (M, q[{—c}], @) satisfies —e. If -c were actual
under the contingency that —a, e would be actual.

Finally, note that the above definition of satisfaction applies to causal mod-
els and causal submodels. The definition does not only capture the relation of
a causal model (M, V) satisfying a formula ¢, but also the relation of a causal
submodel (M, V) satisfying such a formula. This is explained further in the
appendix.

The Analysis

We are now in a position to spell out our analysis in a more precise way. The
key idea is as follows: for c to be a cause of e, there must be a causal model
(M, V') that is uninformative about e, while intervening by ¢ determines e to
be true. The latter condition must be preserved under all interventions by a
set A of actual events. In more formal terms:

doi: 10.48106/dial.v76.i1.01
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DEFINITION 2. Actual Cause (Preliminary)
Let (M, V') be a causal model such that V satisfies M. c is an actual
cause of e relative to (M, V) iff

(C1) (M, V) satisfies c and e, and
(C2) thereis V' C Vsuch that (M, V') is uninformative on e, while for all
A CV,(My[{c}], V') satisfies e.

The rationale behind our analysis is straightforward: there must be a way in
which a genuine cause actually brings about its effect. This production of the
effect can be reconstructed by means of a causal model (M, V') that contains
some information of the original causal model (M, V), but no information
about whether the effect is actual. Or so requires condition (C2).

Furthermore, (C2) says production of an effect must respect actuality. The
idea is that the causal process initiated by a genuine cause must respect what
actually happened. A genuine cause cannot produce its effect via non-actual
events and absences. The process from cause to effect must come about as
it actually happened. This idea requires that a genuine cause must bring
about its effect by events and absences that are actual. We implemented this
requirement as follows: intervening upon the uninformative model (M, V")
by any subset of the actual events and absences V must preserve that e will
become actual if ¢ does. Thereby, it is ensured that a genuine cause cannot
bring about its effect by events or absences that are not actual. If c is a genuine
cause, there can be no subset A of the actual literals V that interferes with the
determination of e by c in the respective uninformative model. We describe
this feature of (C2) as intervention by actuality.

Scenarios

In this section, we test our analysis of actual causation against causal sce-
narios, and compare the results to the counterfactual accounts due to Lewis
(1973), Hitchcock (2001), Halpern and Pearl (2005), and Halpern (2015). We
follow Paul and Hall (2013, 10) in laying out the structure of causal scenarios
by neuron diagrams. “Neuron diagrams earn their keep”, they write, “by rep-
resenting a complex situation clearly and forcefully, allowing the reader to
take in at a glance its central causal characteristics.”> We introduce simple

This being quoted, there are some shortcomings of neuron diagrams. For details, see Hitchcock
(2007b).

Dialectica vol. 76, n° 1
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neuron diagrams for which there is always a corresponding causal model.
Our causal models, however, can capture more causal scenarios than simple
neuron diagrams.

A neuron diagram is a graph-like representation that comes with different
types of arrows and different types of nodes. Any node stands for a neu-
ron, which fires or else does not. The firing of a neuron is visualized by a
gray-shaded node, the non-firing by a white node. For the scenarios to be
considered, we need two types of arrows. Each arrow with a head represents a
stimulatory connection between two neurons, each arrow ending with a black
dot an inhibitory connection. Furthermore, we distinguish between normal
neurons that become excited if stimulated by another and stubborn neurons
whose excitation requires two stimulations. Normal neurons are visualized
by circles, stubborn neurons by thicker circles. A neuron diagram obeys four
rules. First, the temporal order of events is left to right. Second, a normal
neuron will fire if it is stimulated by at least one and inhibited by none. Third,
a stubborn neuron will fire if it is stimulated by at least two and inhibited by
none. Fourth, a neuron will not fire if it is inhibited by at least one.

Typically, neuron diagrams are used to represent events and absences. The
firing of a neuron indicates the occurrence of some event and the non-firing
indicates its non-occurrence. Recall that we analyse causation between token
events relative to a causal model (M, V), where the causal model represents
the causal scenario under consideration. We thus need a correspondence
between neuron diagrams and causal models.

Here is a recipe to translate an arbitrary neuron diagram, as detailed here,
into a causal model. Given a neuron diagram, the corresponding causal model
can be constructed in a step-wise fashion:

For each neuron n of the neuron diagram,

i. assign n a propositional variable p.
ii. If n fires, add the positive literal p to the set V of literals.
iii. If n does not fire, add the negative literal —p to V.
iv. If nhas an incoming arrow, write on the right-hand side of p’s structural
equation a propositional formula ¢ such that ¢ is true iff # fires.

The structural equations can be explicitly constructed from the rules governing neuron diagrams.
That is, the catch-all condition (iv) can be replaced by the following clauses. (v) For each stimu-
latory arrow ending in a normal neuron #, add disjunctively to the right side of p’s structural
equation the variable that corresponds to the neuron where the arrow originates. (vi) For each
pair of stimulatory arrows ending in a stubborn neuron n, add disjunctively to the right side of

doi: 10.48106/dial.v76.i1.01
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This recipe adds a positive literal p to the set V of literals for each neuron that
fires, and a negative literal —p for each neuron that dos not fire. Then the
neuron rules are translated into structural equations. One can thus read off a
neuron diagram its corresponding causal model: if a neuron is shaded gray,
p is in the set V of literals of the corresponding causal model; if a neuron is
white, 7 pisin V.

We have already added a feature to neuron diagrams in the introduction.
Recall that dotted nodes represent neurons about which there is no infor-
mation as to whether or not they fire. In more formal terms, if p ¢ V and
—1p & V, the corresponding neuron will be dotted. We portray now how our
analysis solves the problems posed by overdetermination, conjunctive causes,
early and late preemption, switches, prevention, and two scenarios of double
prevention.

Overdetermination

Scenarios of overdetermination are commonly represented by the neuron
diagram depicted in Figure 1. Here is a story that fits the structure of overde-
termination: A prisoner is shot by two soldiers at the same time (c and a), and
each of the bullets is fatal without any temporal precedence. Arguably, both
shots should qualify as causes of the death of the prisoner (e).

Our recipe translates the neuron diagram of Figure 1 into the following
causal model (M, V):

e=cva
ca,e

Relative to (M, V), c is a cause of e. For this to be seen, consider the following
causal model (M, V') that is uninformative on e.

Intervening by {c} yields:

Obviously, this causal model determines e to be true. In more formal terms,
(Mg, V') satisfies e. And intervening by any subset of actual events does
not undo the determination.” In more detail, any intervention by a subset of

p’s structural equation the conjunction of the two variables that correspond to the two neurons
where the arrows originate. (vii) For each inhibitory arrow ending in n, add conjunctively to the
right side of p’s structural equation the negation of the variable that corresponds to the neuron
where the arrow originates. This translation shows that there is a principled transition from
simple neuron diagrams to our causal models.

‘We will not always explicitly mention this intervention by actuality in the scenarios to come.

Dialectica vol. 76, n° 1
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{c, a, e} yields a causal model that determines e to be true. Due to the symmetry
of the scenario, a is a cause of e.?

Overdetermination is trouble for the counterfactual account of Lewis (1973).
There, Lewis defines actual causation as the transitive closure of counterfac-
tual dependence between occurring events. Let ¢ and e be distinct events.
c is a cause of e iff ¢ and e occur, and there is a sequence {(c,d;, ..., d,, e) of
distinct events and absences such that each element in the sequence (except
the first) counterfactually depends on its predecessor in a non-backtracking
way.? Recall that e counterfactually depends on c just in case if ¢ were not
to occur, e would not occur. Lewis insists that each counterfactual in the
series of counterfactual dependences is non-backtracking.’® A backtracking
counterfactual retraces some past causes from an effect: if the effect e were

The final analysis of section ?? counts the set {c, a} as a cause of e.

Lewis (1986b, 189) says that an absence —a is the non-occurrence of any event of type A. If
the absence —a had not been, some token event a of type A would have been. Counterfactual
dependence between occurring events is thus only a special case of counterfactual dependence
between actual events and absences. The latter is still sufficient for causation, or so argues Lewis.
See Lewis (1986b, 201), Lewis (1973, 566), and Lewis (1979, 456-459). Lewis (1979, 456) charac-
terises reasoning by backtracking as follows: “We know that present conditions have their past
causes. [...] if the present were different then these past causes would have to be different”. The

doi: 10.48106/dial.v76.i1.01
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not to occur, its past causes c and a must have been absent. Intuitively, this
backtracking counterfactual is true in the confines of the overdetermination
scenario. Yet Lewis does not allow such backtracking counterfactuals to figure
in the series of counterfactual dependences.

It follows from Lewis’s account that non-backtracking counterfactual de-
pendence between occurring events is sufficient for causation. As soon as
¢ and e occur, there is a sequence (c, e). If, in addition, e counterfactually
depends on c in a non-backtracking way, c is a cause of e. In the scenario of
overdetermination, c is not a cause of e on this account.** There is no suitable
series of counterfactual dependences. If ¢ had not fired, e would have been
excited all the same. After all, a would still have fired and excited e. Due to
the symmetry of the scenario, a is not a cause of e either. But then, what
caused the death of the prisoner? Surely, we do not want to say that the death
is uncaused.

The counterfactual accounts of causation due to Hitchcock (2001) and
Halpern and Pearl (2005) solve the scenario of overdetermination as follows: ¢
is a cause of e because e counterfactually depends on c if —a is set by interven-
tion. Their tests for causation allow for non-actual contingencies, that is, to
set variables to non-actual values and to keep them fixed at these non-actual
values. We will see that this feature is problematic in switching scenarios and
extended double prevention.

Halpern (2015) modifies the Halpern and Pearl (2005) definition of actual
causation. The main difference is that the modified definition admits only
actual contingencies for the counterfactual test. Hence, the modified defini-
tion fails to recognize the individual overdeterminers as actual causes, while
it counts the set {c, a} of overdeterminers to be an actual cause of e.* It has
troubles to handle overdetermination, as already pointed out by Andreas and
Giinther (2021a). This indicates that overdetermination haunts counterfactual
accounts to date.

exclusion of backtracking counterfactuals plays a crucial role in Lewis’s analysis of causation.
For subtle details regarding backtracking counterfactuals see Lewis (1979).

Lewis (2000) refines his earlier account. There, the idea to hold certain events fixed while altering
others surfaces (Lewis 2000, 191). However, he does not advocate to keep certain merely possible
events or absences fixed. Hence, his refined account does not solve overdetermination either.
This being said, Halpern (2015) calls each conjunct of an actual cause part of a cause.

Dialectica vol. 76, n° 1
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3.2 Conjunctive Causes

In a scenario of conjunctive causes, an effect occurs only if two causes obtain.
The following neuron diagram depicts a scenario of conjunctive causes:

()
©
@/

Figure 2:

The neurons c and a fire. Together they bring the stubborn neuron e to fire.
Had one of ¢ and a not fired, e would not have been excited. Hence, the firing
of both neurons is necessary for e’s excitation.

Our recipe translates the neuron diagram of figure 2 into the following
causal model (M, V):

e=cAa
ca,e

The scenario of conjunctive causes differs from the scenario of overdeter-
mination only in the structural equation for e. While the structural equation
is disjunctive in the scenario of overdetermination, here the equation is con-
junctive. The occurrence of both events, c and a, is necessary for e to occur.

Relative to (M, V), cis a cause of e. For this to be seen, consider the following
causal model (M, V') that is uninformative on e.

Intervening by {c} yields:

Obviously, this causal model determines e to be true. In more formal terms,
(Mg, V') satisfies e. Again, due to the symmetry of the scenario, a is a cause
of e.B3

At first sight, conjunctive causes seem to be no problem for counterfactual
accounts. If ¢ had not fired, e would not have fired. Hence, on the counterfac-
tual accounts, c is a cause of e. And by the symmetry of the scenario, ais a

13 The final analysis of section ?? counts the set {c, a} as a cause of e.

doi: 10.48106/dial.v76.i1.01
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e=CcAa
a
C
e=CcAa
a

cause of e. However, the accounts due to Lewis (1973) and Hitchcock (2001)
do not allow sets of events to be causes, unlike the definitions of actual causa-
tion provided by Halpern and Pearl (2005) and Halpern (2015). Yet the latter
definitions still do not count the set containing c and a as an actual cause of e
in this scenario of conjunctive causes. Hence, none of these counterfactual
accounts counts the set containing the two individual causes as a cause of
the effect. This is peculiar for reasons worked out by Andreas and Giinther
(2021a).

Early Preemption

Preemption scenarios are about backup processes: there is an event c that,
intuitively, causes e. But even if ¢ had not occurred, there is a backup event a
that would have brought about e. Paul and Hall (2013, 75) take the following
neuron diagram as canonical example of early preemption:

¢’s firing excites neuron d, which in turn leads to an excitation of neuron e.
At the same time, ¢’s firing inhibits the excitation of b. Had ¢ not fired, however,

Dialectica vol. 76, n° 1
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a would have excited b, which in turn would have led to an excitation of e.
The actual cause ¢ preempts the mere potential cause a.*

Our recipe translates the neuron diagram of early preemption into the
following causal model (M, V):

d=c
b=aA-c
e=dvVvb
c,a,d,b,e

Relative to (M, V), cis a cause of e. For this to be seen, consider the following
causal model (M, V') that is uninformative on e.

d=c
b=aA-c
e=dvVvb
-b

Intervening by {c} yields:

14 Following @:halpern_jy-pearl:2005 [861-862], we take the model of symmetric overdetermi-
nation in section ?? to be inappropriate for representing the structure of the early preemption
scenario.
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c

d=c
b=a~A-c
e=dvVvb
-b

Obviously, this causal model determines e to be true. In more formal terms,
(Mg, V') satisfies e.

Relative to (M, V), a is not a cause of e. The reason is that actuality inter-
venes. The causal model (M, V') is uninformative on e only for V' = @ or
V' = {=b}. Intervening on (M, V') by {—b} yields a causal model in which a
does not produce e, independently of the cho ice of V’. In more formal terms,
(M-pyl{a}], V') does not satisfy e. For each choice of V’, there is a complete
extension that satisfies the structural equations a,7b,d = c,ande=d Vv b
but does not satisfy e. This extension of V' is {a, =b, =c, =d, —e}. Intuitively, a
is not a genuine cause of e since a would produce e only via an event b that
did not actually occur. Hence, a is not a cause of e because a does not actually
produce e.

Lewis’s (Lewis 1973) account solves early preemption. In Figure 3, cis a
cause of e. Both occur and there is a sequence {c, d, e) such that e counter-
factually depends in a non-backtracking way on d, and d does so on c. The
counterfactual “if d had not fired, its cause ¢ would have to have not fired” is
backtracking. Barring backtracking, we do not obtain that b would have fired
because ¢ did not and thus b would not be inhibited. Hence, if d had not fired,
b would still not have fired. And so “If d had not fired, e would not have fired”
comes out true under the non-backtracking requirement. a is not a cause of
e. For there is no sequence of events and absences from a to e where each
counterfactually depends on its predecessor in a non-backtracking way. If b
had fired, e would still have fired.

The solution to early preemption by Hitchcock (2001) and Halpern and
Pearl (2005) is analogous to their solution for overdetermination. c is a cause
of e because e counterfactually depends on ¢ under the contingency that —b.
By contrast to their solution for overdetermination, the contingency is actual
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in cases of early preemption. Hence, Halpern’s (Halpern 2015) account solves
early preemption as well.

Late Preemption

Lewis (1986b, 200) subdivides preemption into early and late. We have dis-
cussed early preemption in the previous section: a backup process is cut off
before the process started by the preempting cause brings about the effect. In
scenarios of late preemption, by contrast, the backup process is cut off only
because the genuine cause brings about the effect before the preempted cause
could do so. Lewis (2000, 184) provides the following story for late preemption:

Billy and Suzy throw rocks at a bottle. Suzy throws first, or maybe
she throws harder. Her rock arrives first. The bottle shatters. When
Billy’s rock gets to where the bottle used to be, there is nothing
there but flying shards of glass. Without Suzy’s throw, the impact
of Billy’s rock on the intact bottle would have been one of the
final steps in the causal chain from Billy’s throw to the shattering
of the bottle. But, thanks to Suzy’s preempting throw, that impact
never happens.

Crucially, the backup process initiated by Billy’s throw is cut off only by Suzy’s
rock impacting the bottle. Until her rock impacts the bottle, there is always a
backup process that would bring about the shattering of the bottle an instant
later."

Halpern and Pearl (2005, 861-862) propose a causal model for late preemp-
tion, which corresponds to the following neuron diagram:

Suzy throws her rock (c) and Billy his (a). Suzy’s rock impacts the bottle
(d), and so the bottle shatters (e). Suzy’s rock impacting the bottle (d) prevents
Billy’s rock from impacting the bottle (=b). (The “inhibitory signal” from d
takes “no time” to arrive at b.)

Our recipe translates the neuron diagram of late preemption into the fol-
lowing causal model (M, V):

The problem posed by late preemption can be solved by fine-grained individuation conditions
for events. According to these conditions, the shattering of the bottle and the shattering of the
bottle an instant later are two different events. By adopting this strategy counterfactual accounts
run into the trouble of spurious causation: they identify causal relations where, intuitively, there
are none. See, for instance, Lewis (1986b, 204-205), Collins, Hall, and Paul (2004, 45-48) and
Paul and Hall (2013, chap. 3.4.2).
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Figure 4:

d=c
b=aA~d
e=dvVvb
¢, a,d,—b,e

Relative to (M, V), cis a cause of e. For this to be seen, consider the following
causal model (M, V') that is uninformative on e.

d=c
b=aA—-d
e=dvVvb
b

—()
Intervening by {c} yields:
Obviously, this causal model determines e to be true. In more formal terms,

(Mg, V') satisfies e.

Relative to (M, V), a is not a cause of e. The intuitive reason is that Billy’s
rock did not actually impact the bottle. The formal reasoning is perfectly
analogous to the one for the scenario of early preemption in the previous
section. Our analysis solves early and late preemption in a uniform manner.

Lewis’s (Lewis 1973) account does not solve late preemption. Suzy’s throw
(c) is not a cause of the bottle shattering (e). There is no sequence (c, ..., e) of
events and absences such that each event (except c) counterfactually depends
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Cc

d=c
b=aA~d
e=dvVvb
b

on its predecessor in a non-backtracking way. There is, of course, the sequence
{(c,d, e), and if Suzy had not thrown (—c), her rock would not have impacted
the bottle (—d). However, if Suzy’s rock had not impacted the bottle (—d),
the bottle would have shattered anyways (e). The reason is that—on a non-
backtracking reading—if Suzy’s rock had not impacted the bottle (—d), Billy’s
rock would have (b). But if Billy’s rock had impacted the bottle (b), it would
have shattered (e). By contrast to scenarios of early preemption, there is no
chain of stepwise dependences that run from cause to effect: there is no
sequence of non-backtracking counterfactual dependences that links Suzy’s
throw and the bottle’s shattering.*®

The counterfactual accounts of causation due to Hitchcock (2001), Halpern
and Pearl (2005), and Halpern (2015) solve the scenario of late preemption
analogous to early preemption. c is a cause of e because e counterfactually
depends on c under the contingency that —b.

Simple Switch

In switching scenarios, some event f helps to determine the causal path by
which some event e is brought about (Hall 2000, 205). The following neuron
diagram represents a simple version of a switching scenario:

The firing of neuron f excites r’s firing, which in turn excites neuron e. At
the same time, f’s firing inhibits the excitation of I. The neuron [ is a little
special: it would have been excited in case f had not fired. f determines which
one of | and r is firing, and thus determines the causal path by which e is
excited. We say f acts like a switch as to e.

Lewis (2000) claims to solve late preemption. This claim is highly controversial. See, for instance,
Paul (1998).

doi: 10.48106/dial.v76.i1.01
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Figure 5:

Let us supplement our neuron diagram by a story due to Hall (2007, 28).
Flipper is standing by a switch in the railroad tracks. A train approaches in
the distance. She flips the switch (f), so that the train travels down the right
track (), instead of the left (I). Since the tracks reconverge up ahead, the train
arrives at its destination all the same (e). We agree with Hall that flipping the
switch is not a cause of the train’s arrival. The story assumes that flipping
the switch makes no difference to the train’s arrival: “the train arrives at its
destination all the same”. The flipping merely switches the causal path by
which the train arrives.*?

Our recipe translates the neuron diagram of the switching scenario into
the following causal model (M, V):

l=~f
r=/
e=1lvr
folre

Relative to (M, V), f is not a cause of e. The reason is that there exists
no causal model (M, V') uninformative on e. Any complete extension of the

There is a noteworthy difference between switching scenarios and scenarios of preemption. If
the non-actual switch position = f were actual, = f would help bring about e. By contrast, if it
were actual that the genuine cause does not occur in scenarios of preemption, it’s absence would
not help bring about the effect. If Suzy were not to throw her rock, her not throwing would not
help to bring about the bottle’s shattering.
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empty set V' of literals that satisfies the structural equations of M contains
e. In fact, there are only two complete extensions that satisfy the structural
equations, viz. the actual {f, =L, 7, e} and the non-actual {—=f,1, —r,e}. The
structural equations in M determine e no matter what.*®

Our analysis requires for c to be a cause of e that there must be a causal
model uninformative about e in which c brings about e. The idea is that, for an
event to be caused, it must arguably be possible that the event does not occur.
However, in the switching scenario, there is no causal model uninformative
on e in the first place. Hence, f is not a cause of e in the simple switch.

A simplistic counterfactual analysis says that an event c is a cause of a
distinct event e just in case both events occur, and e would not occur if ¢ had
not occurred. This suggests that the switching scenario is no challenge for
counterfactual accounts, because e would occur even if f had not. And yet it
turns out that cases like the switching scenario continue to be troublesome
for counterfactual accounts.

Recall that Lewis (1973) defines actual causation to be the transitive closure
of non-backtracking counterfactual dependence between occurring events. In
the switching scenario, f,r, and e occur, and both r counterfactually depends
on f in a non-backtracking way and e does so on r. Barring backtracking, if r
had not fired, e would not have fired. By the transitive closure imposed on the
one-step causal dependences, Lewis (1973) is forced to say that f is a cause of
e.'9

The sufficiency of (non-backtracking) counterfactual dependence for causa-
tion is widely shared among the accounts in the tradition of Lewis, for instance
by Hitchcock (2001), Woodward (2003), Hall (2004, 2007), and Halpern and
Pearl (2005). However, the counterfactual accounts based on structural equa-
tions reject the transitivity of causation. Still, Hitchcock (2001) counts f to
be a cause of e. The reason is that there is an active causal path from f over
r to e and keeping the off-path variable [ fixed at its actual value induces a
counterfactual dependence of e on f. Similarly, Halpern and Pearl (2005) and
Halpern (2015) count f to be a cause of e, since e counterfactually depends

Hall (2007, 118) writes that the “basic” switch in Paul and Hall (2013, 232) has “the obvious
causalmodel”"M ={b=a,l=bA f,r=bAa-f,e=1lvr},V ={a,b, f,l,~r, e} Relative
to this causal model, our analysis says that f is not a cause of e, as desired. Relative to the causal
scenario, where the equation for e is replaced by e = [, our analysis says that f is a cause of e, as
desired (Paul and Hall 2013, 235).

Lewis (2000, 194-195) still imposes transitivity on his refined analysis of causation. As a result,
the refined anlysis is also forced to say that f is a cause of e in the switching scenario.
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on f under the actual contingency that —l. Hence, even the contemporary
counterfactual accounts misclassify f to be a cause of e.>° Allowing for actual
contingencies solved preemption, but leads to trouble in switching scenarios.
Without allowing for actual contingencies, it is unclear how the counterfac-
tual accounts solve preemption. It seems as if the sophisticated counterfactual
accounts have no choice here but to take one hit.

Realistic Switch

The representation of switching scenarios is controversial. Some authors
criticize the simple switch in Figure 5 from the previous section because
they believe that any “real-world” event has more than one causal influence
(e.g. Hitchcock 2009, 396). The idea is that the train can only pass on the
right track because nothing blocks the track, it is in good conditions, and
so on. These critics insist on “realistic” scenarios in which there is always
more than just one event that causally affects another. The simple switch
is thus inappropriate because there must be another neuron whose firing is
necessary for the excitation of I. Some authors then quickly point out that
the causal model of the resulting switch is indistinguishable from the one of
early preemption (e.g. Beckers and Vennekens 2018, 848-851). And this is a
problem for any account of causation that only relies on causal models. For ¢
should intuitively be a cause of e in early preemption, but f should not be a
cause in a “realistic” switching scenario.

It is too quick to point out that switches and early preemption are struc-
turally indistinguishable. After all, the critics who insist on “realistic” scenar-
ios are bound to say that there should also be another neuron whose firing is
necessary for the excitation of r. This restores the symmetry between [ and
r which seems to be essential to switching scenarios. The following neuron
diagram depicts our realistic switch:

The joint firing of neurons f and h excites r’s firing, which in turn excites
neuron e. At the same time, f’s firing inhibits the excitation of I. Had f not
fired, the firing of g would have excited I, which in turn would have excited e.
In the actual circumstances, f determines which one of [ and r is firing, and
thus acts like a switch as to e.

20 Halpern (2015) uses normality considerations to solve the present switching scenario. See Blan-

chard and Schaffer (2017) for a criticism of this strategy.

21 The problem posed by structurally indistinguishable causal models where our intuitive causal

judgments differ is further discussed in section ??.
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Figure 6:

Our recipe translates the neuron diagram of our realistic switch into the
following causal model (M, V):

l=gnf
r=fAh
e=Ilvr

g f.h,lr,e

Relative to (M, V), f is a cause of e according to our preliminary analy-
sis. For this to be seen, consider the following causal model (M, V') that is
uninformative on e.

Intervening by {f} yields:

Obviously, this causal model determines e to be true. In more formal terms,
(Mg, V') satisfies e. Our preliminary analysis wrongly counts the “realistic
switch” f as a cause of e.

Itis time to amend our preliminary analysis by a condition of weak difference
making. The idea is this: if some event c is a cause of an event e, then it is
not the case that ¢ would be a cause of the same event e. Sartorio (2006, 75)
convinces us that this principle of weak difference making is a condition “the
true analysis of causation (if there is such a thing) would have to meet”.??

22 For more details, see Andreas and Giinther (2020, 1584, 1590).
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l=gA~f
r=fAh
e=lvr
h

f
l=gA~f
r=fAh
e=1lvr
h
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But this condition is violated by “realistic switches”: f helps to bring about
an effect e, and so would the non-actual = f. So a “realistic switch” is not a
cause if we demand of any genuine cause c of some effect e that =.c would not
also bring about e. We demand that =ic would not also bring about e by the
following condition:

C3. There isno V" C V' \ {c} such that (M, V") is uninformative on
e and (M[{—c}], V") satisfies e.

(C3) demands that there is no causal model uninformative on e in which e is
actual if —ic is. The condition ensures that a cause is a difference maker in the
weak sense that its presence and its absence could not bring about the same
effect. This implies Sartorio’s principle of weak difference making: if c is a
cause of e, then —¢ would not also be a cause of e. And note that our condition
of difference making is weaker than the difference-making requirement of
(sophisticated) counterfactual accounts of causation. Unlike them, we do not
require that —e is actual under the supposition that —c is actual (given certain
contingencies).

(C3) ensures that f is not a cause of e in the realistic switch. For this to be
seen, consider the following causal model (M, V") that is uninformative on e.

l=gA~f
r=fAh
e=I1lvr
g

Intervening by {—f} yields:
Obviously, this causal model determines e to be true. In more formal terms,
(Mg, V") satisfies e. Our preliminary analysis amended by (C3) says that the
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f
l=gA~f
r=fAh
e=Ilvr
h

“realistic switch” f isnot a cause of e, as desired.>3 We will leave it as an exercise
for the reader to check that (C3) does not undo any causes our preliminary
definition identifies in this paper, except for the “realistic switches”.

Lewis’s (Lewis 1973) account misclassifies f as a cause of e in our real-
istic switch. As in the simple switch, there is a causal chain running from
f to e: the sequence (f,r,e) of actual events such that each event (except
f) counterfactually depends on its predecessor in a non-backtracking way.
Similarly, Hitchcock (2001), Halpern and Pearl (2005), and Halpern (2015) all
misclassify f as a cause of e. The reasons are analogous to the reasons in the
simple switch. Roughly, e counterfactually depends on f when [ is fixed at its
actual value.

Hitchcock (2009, 395-396) modifies Paul’s (Paul and Hall 2013) “basic” switch of fn. 18. The
modified switch has the “obvious causal model”: M = {b = a,l = gAbAf,r = bAhA-f,e =
Ivr},V ={a,g,b,h, f,1,—r,e}. Relative to this causal model, (C3) rules out that f is a cause of
e, as desired. Halpern and Hitchcock (2010, 16) and Halpern (2016, 72) propose to model the train
scenario by the following causal model: M = {e = (fA=lb)V(=fA-rb)}, V ={f,—lb,-rb,e}.
The variables rb and Ib indicate whether or not the right and left track are blocked, respectively.
Relative to this causal model, (C3) rules out that f is a cause of e, as desired.
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3.7 Prevention

To prepare ourselves for a discussion of double prevention, let us take a look at
simple prevention first. Paul and Hall (2013, 174) represent the basic scenario
of prevention by the following neuron diagram:

()
O
@/

Figure 7:

Neuron c fires and thereby inhibits that neuron e gets excited. e would have
been excited by d if the inhibitory signal from c were absent. But as it is, c
prevents e from firing. That is, ¢ causes —e by prevention.

Our recipe translates the neuron diagram of prevention into the following
causal model (M, V).

e=-cAd
¢, d,e

Relative to (M, V), c is a cause of —e. For this to be seen, consider the
following causal model (M, V') that is uninformative on —e.

e=-cAd

Intervening by {c} yields:
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e="cAd

@/

Obviously, this causal model determines —e to be true. In more formal terms,
(Mg, V') satisfies —e. Moreover, d is not a cause of —e relative to (M, V). Any
causal model (M, V') uninformative on —e must be uninformative on c as
well. Intervening by d in (M, V') does not determine —e.

Counterfactual accounts face no challenge here. If ¢ had not fired, e would
have fired. Counterfactual dependence between actual events and absences is
sufficient for causation. Hence, c is a cause of —e. If d had not fired, e would
not have fired, even under the contingency that c did not fire. Hence, d is not
a cause of —e.

Double Prevention

Double prevention can be characterized as follows. c is said to double prevent
e if ¢ prevents an event that, had it occurred, would have prevented e. In other
words, ¢ double prevents e if ¢ cancels a threat for e’s occurrence. Paul and Hall
(2013, 154, 175) represent an example of double prevention by the following
neuron diagram:

¢’s firing prevents d’s firing, which would have prevented e’s firing. The
example of double prevention exhibits a counterfactual dependence: given
that b fires, e’s firing counterfactually depends on c’s firing. If ¢ did not fire, d
would fire, and thereby prevent e from firing. Hence, c’s firing double prevents
e’s firing in Figure 8. In other words, c’s firing cancels a threat for e’s firing,
viz. the threat originating from b’s firing.

Paul and Hall (2013) say that c is a cause of e in the scenario of Figure 8.
They thereby confirm that there is causation by double prevention. e counter-
factually depends on c. Hence, the accounts of causation due to Lewis (1973,
2000), Hitchcock (2001), Halpern and Pearl (2005), and Halpern (2015) agree
with Paul and Hall in counting c a cause of e. How does our account fare?
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Figure 8:

Our recipe translates the neuron diagram of double prevention into the
following causal model (M, V):

d=bA-c
e=aAnd
a,b,c,—d,e

Relative to (M, V), cis a cause of e. For this to be seen, consider the following
causal model (M, V') that is uninformative on e.

Intervening by {c} yields:

Obviously, this causal model determines —d and so e to be true. In more
formal terms, (M}, V') satisfies e.

Extended Double Prevention

Hall (2004, 247) presents an extension of the scenario depicted in Figure 8.
The extended double prevention scenario fits the structure of the following
neuron diagram:

Figure 9 extends Figure 8 by neuron d, which figures as a common cause of
b and c. d starts a process via b that threatens to prevent e. At the same time,
d initiates another process via c that prevents the threat. d cancels its own
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d=bA-c
.—> e=aA—d

a,b

c

d=bA-c

e=aA—d

a,b
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Figure o:

threat—the threat via b—to prevent e. In the example of the previous section,
the threat originated independent of its preventer. Here, by contrast, d creates
and cancels the threat to prevent e. This difference is sufficient for d not to be
a cause of e, or so argue for instance Paul and Hall (2013, 216). Observe that
the structure characteristic of double prevention is embedded in Figure 9. The
firing of neuron c inhibits f’s firing that, had it fired, would have inhibited e’s
firing. Nevertheless, this scenario of double prevention exhibits an important
difference to its relative of the previous section: e does not counterfactually
depend on d. If d had not fired, e would still have fired.

Hitchcock (2001, 276) provides a story that matches the structure of the
scenario. A hiker is on a beautiful hike (a). A boulder is dislodged (d) and
rolls toward the hiker (b). The hiker sees the boulder coming and ducks (c),
so that he does not get hit by the boulder (= f). If the hiker had not ducked,
the boulder would have hit him, in which case the hiker would not have
continued the hike. Since, however, he was clever enough to duck, the hiker
continues the hike (e).

Hall (2007, 36) calls the subgraph d — b —c — f a short circuit with respect to
e: the boulder threatens to prevent the continuation of the hike, but provokes
an action that prevents this threat from being effective. Like switching scenar-
ios, the scenario seems to show that there are cases where causation is not
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transitive: the dislodged boulder d produces the ducking of the hiker ¢, which
in turn enables the hiker to continue the hike e. But it is counterintuitive to
say that the dislodging of the boulder d causes the continuation of the hike
e. After all, the dislodgement of the boulder is similar to a switch as to the
hiker not getting hit by the boulder: d helps to bring about = f, and if —~d were
actual, =d would also help to bring about = f. In this sense, d is causally inert.

Our recipe translates the neuron diagram of the boulder scenario into the
following causal model (M, V):

b=d

c=d
f=bA-c
e=aA-f
a,d,b,c,—f,e

Relative to (M, V), d is not a cause of e. The reason is that the causal model
(M, V") is only uninformative on e if a is not in V’. But then (Mg, V') does
not satisfy e.

In words, the causal model (M, V') is uninformative about e only if a is
not in the set V’ of literals. But then intervening with d does not make e true.
After all, a is necessary for determining e. If we were to keep a in the literals,
the model would not be uninformative. There is no complete extension of
V' = {a} that satisfies all the structural equations of M but fails to satisfy e.

On Lewis’s (Lewis 1973) account, d is a cause of e. There is a sequence
(d,c,—f,e) of events and absences such that each element (except d) counter-
factually depends on its predecessor in a non-backtracking way. The structural
equation accounts of Hitchcock (2001), Halpern and Pearl (2005), and Halpern
(2015) classify d as a cause of e. The reason is that e counterfactually depends
on d under the contingency that b.

The situation is bad for the sophisticated counterfactual accounts. While
their general strategy to allow for possibly non-actual contingencies solves
overdetermination and preemption, it is the very same strategy that is at fault
for the unintuitive results in the switching scenario and extended double
prevention. The backfiring of their general strategy casts doubt on whether it
was well motivated in the first place. If the general strategy is merely motivated
by solving overdetermination, it turns out that overdetermination still haunts
the sophisticated accounts of causation. By contrast to these counterfactual
accounts, our analysis of actual causation solves overdetermination without
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further ado. Our analysis has thus a major advantage over the sophisticated
counterfactual accounts.

4 Final Analysis

In section ??, we stated a preliminary version of our analysis and amended
it in section ?? by condition (C3). The amended version is still preliminary
because it assumes that both the cause and the effect are single events. This
assumption is violated in certain causal scenarios. Recall, for instance, the
scenario of conjunctive causes from section ??. There, two events are necessary
for an effect to occur, and so the set containing the two events should count
as a cause of said effect. To give an example, lightning resulted in a forest fire
only because of a preceding drought. Here, it seems plausible that lightning
together with the preceding drought is an—if not the—cause of the forest
fire.>

We lift the restriction of cause and effect to single literals as follows. A cause
is a set of literals C, an effect an arbitrary Boolean formula. Where C is a set
of literals, /\ C stands for the conjunction of all literals in C and —C for the
negation of all literals in C. Our final analysis of actual causation can now be
stated.

DEFINITION 3. Actual Cause* Let (M, V) be a causal model such
that V satisfies M. C is a set of literals and ¢ a formula. C is an actual
cause of ¢ relative to (M, V) iff

(C1*) (M, V) satisfies A C A g, and

(C2*) there is V' C V such that (M, V') is uninformative on ¢, while for all
A C Vand all non-empty C' C C, (M4[C’], V') satisfies ¢; and

(C3*) there isno V” c V' \ C such that (M, V") is uninformative on ¢ and
(M[~C], V") satisfies e.

In this more general analysis, clause (C2*) contains a minimality condition
ensuring that any cause contains only causally relevant literals. For this to be
seen, suppose there is a set C' ¢ C whose members are causally irrelevant for
¢. That is, intervening by C’ in any partial model uninformative on ¢ does not
make ¢ true (under all interventions by actuality). Then, by the minimality

24 Andreas and Giinther (2021a, 608-610) argue that it is desirable if an account of causation can
count sets of events as causes.
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condition, C would not be a cause, contrary to our assumption. Thanks to
this condition, causally irrelevant factors cannot simply be added to genuine
causes.>

How fare the counterfactual accounts with respect to sets of causes? Let
us consider the scenario of overdetermination. As explained in section ??,
Halpern’s (2015) account counts only the set of individual causes as a genuine
cause. The other counterfactual accounts do not count this set as a cause.
We think it is reasonable to recognize both the individual causes and the
set of these causes as a proper cause. We would say that, for instance, two
soldiers shooting a prisoner, where each bullet is fatal without any temporal
precedence, is a perfectly fine cause for the death of the prisoner. The shooting
of the two soldiers brings about the death of the prisoner.

The account of Hitchcock (2001) does not admit causes that are sets of
variables. Hence, the set containing the two individual causes does not count
as a cause in the scenarios of overdetermination and conjunctive causes.
Unlike Hitchcock’s account, the accounts due to Halpern and Pearl (2005)
and Halpern (2015) admit causes to be sets of variables. Still, these accounts
do not recognize the set containing the two individual causes as a cause in
the scenario of conjunctive causes. The accounts share the same minimality
condition according to which a strict superset of a cause cannot be a cause.
Hence, they are forced to say that, for instance, the drought together with
the lightning is not a cause of the forest fire because one of these events (and
indeed both) already counts as a cause for this effect. This reason for why the
set is not a cause is a little odd.

Comparison

In this section, we compare our analysis to the considered counterfactual
accounts. First, we focus on the results of the different accounts. Then we
compare—on a conceptual level—our analysis to the counterfactual accounts
that rely on causal models.

If one wants cause and effect to be distinct, one should amend Definition 3 by a clause like this:
no element of C occurs in €.
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5.1 Results

The results of our analysis and of the considered counterfactual accounts
are summarized in the following table. We abbreviate the accounts of Lewis
(1973), Hitchcock (2001), Halpern and Pearl (2005), and Halpern (2015) by
£L’73, Hitch’o1, HP’05, and H’15, respectively.

Causes of e or —e £L’73 | Hitch’o1 | HP’o5 | H’15 | Author(s)
Overdetermination - ca ca {c,a} | ¢,a,{c,a}
Conjunctive Causes c,a c,a c,a ca | ¢alfcal
Early Preemption c c c c c
Late Preemption - c c c c
Switches f f f f -
Prevention c c c c c
Double Prevention c c c c c
E. Double Prevention d d d d -

None of the counterfactual accounts listed in the table provides the intu-
itively correct results for the simple and “realistic” switching scenarios and
extended double prevention. Lewis’s (Lewis 1973) account misclassifies f and
d as causes of e, respectively, because of the transitive closure he imposes
on the step-wise and non-backtracking counterfactual dependences. And
without imposing transitivity, his analysis of causation cannot solve early
preemption. For Halpern (2015), Hitchcock (2001) and Halpern and Pearl
(2005), the reason for the misclassification is that they allow for actual contin-
gencies. And if they were not to allow for such, their accounts would fail to
solve preemption. The counterfactual accounts due to Hitchcock (2001) and
Halpern and Pearl (2005) solve overdetermination, but only by allowing for
even non-actual contingencies.

We have thus shown that the sophisticated counterfactual accounts fail to
capture the set of overdetermination, preemption, switches, and extended
double prevention. And they fail for a principled reason: they can solve overde-
termination and preemption only if they allow for contingencies. But, by
allowing for contingencies, they fail to solve the switching scenario and ex-
tended double prevention. If they were not to allow for contingencies, they
would solve the switching scenario and extended double prevention, but it
would be unclear how they could solve overdetermination and preemption.
Our analysis, by contrast, does not fall prey to such a principled problem.
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Let us summarize the verdicts about the results, where , and ! stand for
correct, false, and partially correct, respectively.

Au-
Causes of e or —e £’73 Hitch’or HP’o5 H’ijg thor(s)
Overdetermination  cross check check ! check
Conjunctive ! ! ! ! check
Causes
Early Preemption check check check check  check
Late Preemption Cross check check check check
Switch Cross Cross Cross Cross check
Prevention check check  check check  check
Double Prevention  check check  check check  check
E. Double Cross Cross Cross Cross check
Prevention

There remains another problem to be solved. The problem concerns any
account that relies on simple causal models which only factor in structural
equations and values of variables (or our sets of literals). Such accounts face
pairs of scenarios for which our causal judgments differ, but which are struc-
turally indistinguishable. Overdetermination, for instance, is isomorphic to
bogus prevention. In bogus prevention, an event p would prevent another
event d. But, as it is, there is no event c present that would bring about d in the
first place. Hence, the preventer p and the absence of c overdetermine that d
does not occur. By contrast to overdetermination, however, the preventer p
is intuitively not a cause of the absence —d. Since the accounts of Hitchcock
(2001) and Halpern and Pearl (2005) consider only structural equations and
the values of variables, they cannot distinguish between p and one of the
causes in overdetermination. The former must be falsely classified to be a
cause if the latter is correctly classified so0.2° And our analysis has the same
problem.?”

As pointed out by Hiddleston (2005, 32) and Hall (2007, 44), Hitchcock’s (Hitchcock 2001) and
Halpern’s (Halpern and Pearl 2005) allowance of non-actual contingencies solves the overdeter-
mination scenario, but it leads to the intuitively wrong results in bogus cases of both prevention
and double prevention. From this perspective, the non-actual contingencies, as opposed to merely
actual contingencies, are thus even more bad news.

This being said, the causal model of bogus prevention is: M = {d = =p A c}, V = {-¢, p, d}.
Blanchard and Schaffer (2017, 200-202) argue that this causal model is inappropriate for bogus
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Hitchcock (2007a), Hall (2007), Halpern (2008), Halpern and Hitchcock
(2015), and Halpern (2015) all aim to solve the problem of isomorphism by
taking into account default or normality considerations. This additional factor
gives considerable leeway to solve some of the isomorphic pairs. However,
actual causation does not seem to be default-relative, as pointed out by Blan-
chard and Schaffer (2017). They also show that the accounts amended by a
notion of default still face counterexamples and even invite new ones. Nev-
ertheless, the problem of isomorphism suggests that simple causal models
ignore a factor that impacts our intuitive causal judgments. We think this
ignored factor are not default considerations, but a meaningful distinction
between events that occur and events that do not. After all, a distinction be-
tween events and absences seems to be part of the structure of causation. Yet
current accounts relying on causal models are blind to such a distinction.

Our analysis of causation is thus incomplete. We need to amend it by a
meaningful distinction between events and absences, which allows us to tackle
the problem of isomorphism. More generally, we miss an account of what
constitutes an appropriate causal model. That is, an account that tells us which
causal models are appropriate for a given causal scenario. For now, we have
just assumed that the causal models obtained from simple neuron diagrams
are appropriate. This assumption already smuggled in certain metaphysical
assumptions about events. We will elaborate these underpinnings of our
analysis elsewhere.

Conceptual Differences

Let us compare—on a more conceptual level—our analysis to the counter-
factual accounts that likewise rely on causal models. As we have seen, these
sophisticated counterfactual accounts analyse actual causation in terms of
contingent counterfactual dependence relative to a causal model. Hitchcock
(2001), Halpern and Pearl (2005), and Halpern (2015), for instance, have put
forth such accounts. All of these accounts have in common that the respective
causal model provides full information about what actually happens, and
what would happen if the state of affairs were different. Hence, causal models
allow them to test for counterfactual dependence: provided c and e are actual

prevention and propose to model the bogus scenario by a model isomorphic to early preemption.
If they are right, our analysis would give the correct verdict for bogus prevention. We would like
to thank an anonymous referee for this observation.
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in a causal model, would —e be actual if —c were? If so, e counterfactually
depends on c; if not, not.

The mentioned accounts put forth more elaborate notions of counterfactual
dependence. These notions specify which variables other than ¢ and e are to
be kept fixed by intervention when testing for counterfactual dependence.
The accounts ask a test question for contingent counterfactual dependence:
relative to a causal model, where ¢ and e are actual, would —e be actual if
—c were under the contingency that certain other variables are kept fixed at
certain values? If so, e counterfactually depends on c under the contingency;
if not, not. To figure out whether c is a cause of e, counterfactual accounts
propagate forward—possibly under certain contingencies—the effects of the
counterfactual assumption that a putative cause were absent.

We analyse, by contrast, actual causation in terms of production relative to
a causal model that provides only partial information. More specifically, our
analysis relies on models that carry no information with respect to a presumed
effect e: they are uninformative as to whether or not the event or absence e is
actual. Such uninformative models allow us to test whether an actual event
or absence is actually produced by another. The test question goes as follows:
in a model uninformative on e, will e become actual if ¢ does? If so, c is a
producer of e; if not, not. And a producer c is then a cause of e if =c would
not also be a producer of e.

Our test has no need that —e becomes actual if —c were actual. Instead the
question is whether, in an uninformative model, an actual event produces
(and makes a weak difference to) another in accordance with what actually
happened. The novelty of our account is not so much to consider actual pro-
duction, but to consider production in a causal model that is uninformative on
the presumed effect. As a consequence, when testing for causation, we never
intervene on a causal model, where the set of actual literals is complete. This
stands in stark contrast to counterfactual accounts which always intervene
on causal models, where each variable is assigned a value.

On our analysis, c is a cause of e only if ¢ produces e under all interventions
by actuality. There is a mentionable symmetry to Halpern’s (Halpern 2015)
account which allows only for actual contingencies. On this account, c is
a cause of e if there is an intervention by actuality such that the actual e
counterfactually depends on the actual ¢.?® Production under all interventions

The intervention by actuality on Halpern’s (Halpern 2015) account can just be the intervention
by the empty set.
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by actuality is necessary for causation on our account, whereas counterfactual
dependence between actual events under some intervention by actuality is
sufficient on Halpern’s.

Counterfactual notions of causation generally say that a cause is necessary
for an effect: without the cause, no effect. By contrast, our notion of causation
says that a cause is sufficient for its effect given certain background conditions.
The background conditions are given by the partial set of literals of the causal
model that is uninformative on the effect. That is, these conditions are jointly
not sufficient for the effect given the structural equations. However, together
with a genuine cause these conditions are jointly sufficient for the effect (given
the same structural equations). Relative to the causal model uninformative
on the effect, a cause is thus necessary and sufficient for its effect.?

Conclusion

We have put forth an analysis of actual causation. In essence, c is a cause of e
justin case cand e are actual, and there is a causal model uninformative on e in
which c actually produces e, and there is no such uninformative causal model
in which —¢ would produce e. Our analysis successfully captures various
causal scenarios, including overdetermination, preemption, switches, and
extended double prevention. All extant sophisticated counterfactual accounts
of causation fail to capture at least two of the causal scenarios considered.
With respect to this set, our analysis is strictly more comprehensive than those
accounts.

The sophisticated counterfactual accounts, which rely on causal models,
run into problems for a principled reason. They fail to solve the switching
scenario and extended double prevention because they allow for possibly
non-actual contingencies when testing for counterfactual dependence. Such
contingencies are needed to solve the problems of overdetermination and
preemption. Our analysis, by contrast, is neither premised on counterfactuals

Perhaps, our analysis bears more resemblance to regularity analyses of causation than to counter-
factual accounts. The core idea behind regularity analyses can be glossed as follows: ¢ is a cause
of e justin case, given the laws of nature, ¢ together with a minimal set of background conditions
is jointly sufficient for e. Indeed, our analysis of causation can be seen as a regularity theory
when one replaces “laws of nature” by “structural equations” and “minimal set of background
conditions” by “partial set of actual literals”. In a causal model uninformative on e, intervening
by a cause c is sufficient to bring about the effect e. In a very specific sense, this says that the
“laws” and “minimal background conditions” imply that c is sufficient for e. However, we are
not aware of any regularity theory that employs an equivalent to our uninformative models.
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of the form “if —ic, then —e”, nor on considering possibly non-actual contin-
gencies. Hence, our analysis escapes the principled problem to which the
sophisticated counterfactual accounts are susceptible.

The present analysis of causation has a counterfactual counterpart due to
Andreas and Giinther (2021b). The counterfactual analysis likewise relies on
an information removal and uninformative causal models. The gist is this: an
event c is a cause of another event e just in case both events occur, and—after
removing the information whether or not c and e occur—e would not occur if
¢ were not to occur. This analysis does not rely on the strategy common to the
sophisticated counterfactual accounts, and is therefore also not susceptible to
their principled problem.

The two analyses largely come to the same verdicts. However, unlike the
present preliminary analysis, the preliminary counterfactual analysis cannot
identify the overdetermining causes in scenarios of symmetric overdetermi-
nation. And while the present final analysis counts the set {c, a} as a cause in
the scenario of conjunctive causes, the final counterfactual analysis does not.
More importantly, the present final analysis does not count “realistic switches”
as causes, whereas the final counterfactual analysis does. The present analysis
has therefore a slight edge over its counterfactual counterpart.

Appendix: The Framework of Causal Models

In this appendix, we supplement the explanations of the core concepts of
causal models with precise definitions. Let P be a set of propositional variables
such that every member of P represents a distinct event. £p is a propositional
language that is defined recursively as follows: (i) Any p € P is a formula. (ii)
If ¢ is a formula, then so is —¢. (iii) If ¢ and ¢ are formulas, then so are ¢ v ¢
and ¢ A . (iv) Nothing else is a formula.

As is well known, the semantics of a propositional language centers on the
notion of a value assignment. A value assignment v : P — {T, F} maps each
propositional variable on a truth value. We can represent a value assignment,
or valuation for short, in terms of literals. The set L(v) yields the set of literals
that represents the valuation v.

DEFINITION 4. L(v)

Letv : P+ {T,F}be avaluation of the language £p. L(v) is the set
of literals of £p such that, for any p € P, (i) p € L(v) iff v(p) = T,
and (ii) ~p € L(v) iff v(p) = F.
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We say that a set V of literals is complete—relative to £ p—iff there is a valu-
ation v such that L(v) = V. If the language is obvious from the context, we
simply speak of a complete set of literals, leaving the parameter P implicit.
The function L(v) defines a one-to-one correspondence between the val-
uations of £Lp and the complete sets of Lp literals. In more formal terms,
L(v) defines a bijection between the set of valuations of £p and the set of the
complete sets of £p literals. Hence, the inverse function L~!(V) of L(V) is
well defined for complete sets V of literals. Using the inverse of L(V), we can
define what it is for a complete set V of literals to satisfy an £p formula ¢:

VE ¢iff LN (V) Ec ¢, VE$)

where F stands for the satisfaction relation of classical propositional logic.
In a similar vein, we define the semantics of a single structural equation:

VEp=¢iff, LY (V) k¢ piff LY (V) k¢ ¢. VEp=¢)

In simpler terms, V satisfies the structural equation p = ¢ iff both sides of the
equation have the same truth value, on the valuation specified by V. We say
that a set V of literals satisfies a set M of structural equations and literals iff V'
satisfies each member in M. In symbols,

VEMIiff V Eyforeachy € M. VEM)

These two relations of satisfaction in place, we can say what it is for a causal
model (M, V) to satisfy a Boolean formula ¢.

DEFINITION 5. (M, V) F ¢
Let (M, V) be a causal model relative to Lp. (M, V) E ¢ iff V© E ¢ for
all complete sets V¢ of literals such that V C V¢ and V¢ E M.

The definition says that ¢ is true in (M, V) iff it is true in all complete in-
terpretations V¢ that extend V and that satisfy M. For complete models, the
definition boils down to (M, V) E ¢ iff V E ¢ or VM.

There remains to define the notion of a submodel M; that is obtained by
an intervention I on a model M.

DEFINITION 6. Submodel M;
Let M be a set of structural equations of the language L£p. Let I be a
consistent set of literals. M; is a submodel of M iff:

My={(p=¢)eM|pé¢landpgIlUl
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A submodel M} has two types of members. First, the structural equations of
M for those variables which do not occur in I. Second, the literals in I. Hence,
the syntactic form of a submodel M; differs from the one of a model M. If I is
non-empty, the submodel M; has at least one member that is not a structural
equation but a literal. The satisfaction relation V' F M remains nonetheless
well defined. The reason is that V' E y has been defined for both a structural
equation y and an £p formula.*
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