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Axiomatization of Galilean Spacetime

Jeffrey Ketland

In this article, we give a second-order synthetic axiomatization Gal(1, 3)
for Galilean spacetime, the background spacetime of Newtonian classical
mechanics. The primitive notions of this theory are the 3-place predi-
cate of betweenness Bet, the 2-place predicate of simultaneity ∼, and
a 4-place congruence predicate, written ≡∼, restricted to simultaneity
hypersurfaces. We define a standard coordinate structure 𝔾(1,3), whose
carrier set is ℝ4, and which carries relations (on ℝ4) corresponding to
Bet, ∼, and ≡∼. This is the standard model of Gal(1, 3). We prove that
the symmetry group of 𝔾(1,3) is the (extended) Galilean group (an ex-
tension of the usual 10-parameter Galilean group with two additional
parameters for length and time scalings). We prove that each full model
of Gal(1, 3) is isomorphic to 𝔾(1,3).

This article provides a synthetic (and second-order) axiom system, which I
call Gal(1, 3), which describes Galilean spacetime and does so categorically.1
Galilean spacetime is a systemℙ of points onwhich three physical geometrical
primitives are defined, satisfying certain conditions.2 Galilean spacetime can
be thought of as the background geometry of the system of spacetime events
for Newtonian classical mechanics:

1 The parameters “1” and “3” in Gal(1, 3)mean: “1 time and 3 space dimensions.” Recall that an
axiom system is called categorical when it has exactly one model up to isomorphism. Second-
order Peano arithmetic, PA2, is categorical, its unique model being (ℕ, 0, 𝑆,+,×). The proof
(essentially given inDedekind 1888) is that if𝑀 ⊧ PA2, wemay define usingDedekind’s Recursion
Theorem a function Φ ∶ ℕ → dom(𝑀) by Φ(0) = 0𝑀 and, for all 𝑛 ∈ ℕ, Φ(𝑛 + 1) =
𝑆𝑀(Φ(𝑛)). The axioms of PA2 then imply thatΦ is a bijection, which is an isomorphism from
(ℕ, 0, 𝑆,+,×) to𝑀. In addition to PA2, the theory ALG of the complete ordered field is also
categorical (essentially given in Huntington 1903; using methods developed in Dedekind 1872;
Cantor 1897; Hölder 1901). Various second-order geometrical theories are also categorical. These
include the systems denotedBG(4) and EG(3) below. Theorems 62 and 63 in appendix B establish
the categoricity (and standard models) of these two systems. The proofs are due to Hilbert (1899),
Veblen (1904), and Tarski (1959).

2 I think, informally, of a Galilean spacetime modally: a physically possible world with certain
distinguished, or built-in, geometrical (spatio-temporal) relations. Such metaphysical issues,
however, don’t matter here, as our whole discussion below is about models of Gal(1, 3).

1



2 Jeffrey Ketland
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Figure 1: Galilean Spacetime

I shall call the carrier set of Galilean spacetime ℙ: this is the domain of
“spacetime points” or “events.” Going ahead of ourselves a bit, there are
three distinguished physical relations on ℙ. A three-place betweenness rela-
tion 𝐵, which gives the whole system an affine “straight-line” structure;3 a
binary simultaneity relation ∼, which induces a partition of ℙ into a system
of non-intersecting simultaneity hypersurfaces, Σ0, Σ1,…, arranged as a “fo-
liation”; and a special four-place congruence relation: this is the four-place
sim-congruence relation, ≡∼, which induces three-dimensional Euclidean
geometry on each hypersurface.4
An especially important subset of straight lines are “time axes”: a time axis

is a straight line in the affine geometry that does not lie within a simultaneity
hypersurface. Physically, a time axis is the trajectory of a material point acted
on by no forces—this is Newton’s First Law or the Law of Inertia.5

3 It is isomorphic to the standard four-dimensional affine space usually called 𝔸4 (see Gallier
2011), which is gotten from the vector spaceℝ4 by “forgetting its origin.” In Gallier’s notation,
𝔸4 is (ℝ4,ℝ4, +), where the firstℝ4 is the point set, the secondℝ4 is the vector space, and+ is
the action of vectors inℝ4 on points inℝ4. For the reader whose algebra is rusty, the notion of a
group action is explained nicely in Dummit and Foote (2004, 41), Gallier (2011, 11), or Saunders
(2013, 29).

4 A valuable semi-formal mathematical description of Galilean spacetime, incorporating what has
just been said, is given in Arnold (1989, chap. 1).

5 Why domaterial points move (four-dimensionally) along these “grid lines” in Galilean spacetime?
The physical answer is that such trajectoriesminimize the action. I.e., 𝛿∫ 𝑑𝑡 ( ̇𝑞)2 = 0.
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Axiomatization of Galilean Spacetime 3

We can bundle the carrier set of Galilean spacetime and the aforemen-
tioned three distinguished physical relations on Galilean spacetime together:
(ℙ, 𝐵, ∼,≡∼). Our aim in this paper is to give a synthetic axiomatization of
this structure (ℙ, 𝐵, ∼,≡∼).6 This means that, in contrast with analytic geom-
etry, the axioms do not quantify over the reals, introduce a metric function
(like a Riemannian metric 𝑔𝑎𝑏), or talk about coordinate systems. Instead,
the axioms use a number of basic physical predicates on spacetime. And
then the existence of special mappings Φ ∶ ℙ → ℝ4—that is, coordinate
systems—becomes a theorem, not an assumption.
Hartry Field (1980) has carefully studied this approach in order to try and

vindicate nominalism: this is the claim that there are no mathematical objects
at all, and insofar as numbers, functions, sets, vector spaces, Lie groups, and
so on are used in physics and science more generally, they can be dispensed
with. It is the claim that physical theories can, in principle, be replaced with
theories that are “nominalistic” and that the normal use of mathematics is
“useful but false.” It is to Field’s enormous credit to have pinned down the two
essential uses. These are:

Expressiveness. We can express physical laws by, e.g., “∇ ⋅ B = 0”
and so on. So, B is amixed function that maps each point to some
numbers. As Feynman put it, “From a mathematical view, there is
an electric field vector and a magnetic field vector at every point in
space; that is, there are six numbers associated with every point”
(Feynman, Leighton and Sands 2005, chaps. 20, sec.3).

6 I have tried to write this paper so that it can be read by those unfamiliar with some of the some-
what arcane details of synthetic geometry. A very useful summary of the main ideas behind the
construction of coordinate systems may be found in Burgess and Rosen (1997, 102–111). In my
view, a very clear and nice introduction to the topic of affine and projective incidence geometry is
Bennett (1995), where “geometric addition” and “multiplication” of points on a fixed line are
explained clearly, and the core result is proved, that the line, with those operations, is a division
ring (if Desargues’s Theorem is assumed) and a field (if Pappus’s Theorem is assumed). Notable
reference works more generally are Coxeter (1969) and Hartshorne (2000). A fairly advanced
treatment is Borsuk and Smielew (1960). Tarski’s papers (1959; and Tarski and Givant 1999) are
very accessible. The first of these sketches the representation theorem for first-order Euclidean
geometry and for the second-order Euclidean geometry EG(3) used below. Tarski focuses on the
two-dimensional, first-order (“elementary”) case. The book Schwabhäuser, Szmielew and Tarski
(1983) is very detailed (it is in German, and there is no English translation). Some recent works
have implemented Tarski Euclidean geometry in theorem provers, just as one can implement
arithmetic, set theory, and type theory in such provers. I have no doubt that this can, in princi-
ple, be generalized to our Galilean spacetime geometry and to one or other axiomatization of
Minkowski spacetime geometry.
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4 Jeffrey Ketland

Proof-Theoretic. Mathematically reasoning is generally conser-
vative over non-mathematical premises, but using mathematics, we
can get “quicker proofs” of a non-mathematical conclusion C from
a non-mathematical premise P.

As regards the second, in mathematical logic, this is called “speed-up,” and
it was discovered by Kurt Gödel (1935) as a spin-off from his incomplete-
ness results. Perhaps the most remarkable example of this phenomenon was
given in Boolos (1987), a first-order valid inference with a short mathematical
proof (it uses second-order comprehension), but whose shortest purely logical
derivation, using the rules for the connectives and quantifiers, has vastly more
symbols than the number of baryons in the observable universe.7
The best survey, and overall evaluation, of a large variety of nominalist ap-

proaches for both mathematics and science is Burgess and Rosen (1997).8 I’m
not recommending this as an approach to studying the geometrical assump-
tions of physical theories, as my own view here is the usual mathematical
realist view (“useful because true”). Indeed, Riemannian geometry is here to
stay! Riemannian geometry provides incredible flexibility by assuming the ex-
istence of ametric tensor 𝑔𝑎𝑏 on spacetime.9However, for the two special cases
of Galilean spacetime andMinkowski spacetime, the synthetic approach helps
provide a nice example of how the physics (i.e., the basic physical relations:
betweenness, congruence, and so on) and mathematics (i.e., real numbers,
coordinate systems, vector spaces, and so on) get “entangled.”
The basic machinery for the introduction of coordinates is the Representa-

tion Theorem. Given a synthetic structure satisfying a series of conditions, one
proves the existence of an isomorphism to a standard coordinate structure:10

Φ ∶ synthetic structure→ coordinate structure. (1)

7 See Ketland (2022) for a formalization of the quicker proof in the Isabelle theorem prover.
8 In that book, Field’s approach is called “geometrical nominalism.”A technical difficulty that arises
for Field’s program in Field (1980) concerning the problem of maintaining both a conservativeness
condition and representation theorems is briefly described in remark 14 below.

9 As Einstein showed, the laws of gravitation amount to certain differential equations constraining
𝑔𝑎𝑏 and the energy-momentum tensor 𝑇𝑎𝑏. The “low energy limit” of Einstein’s field equation is
Newton’s Law of Gravitation. Two standard textbooks on general relativity are Weinberg (1972)
andWald (1984).

10 Cf. Terence Tao (2008): “More generally, a coordinate systemΦ can be viewed as an isomorphism
Φ ∶ 𝐴 → 𝐺 between a given geometric (or combinatorial) object A in some class (e.g. a circle),
and a standard object G in that class (e.g. the standard unit circle).”

Dialectica vol. 77, n° 2



Axiomatization of Galilean Spacetime 5

That is, the isomorphism Φ takes each point 𝑝 in the synthetic structure to its
coordinates Φ𝑖(𝑝) (usually inℝ𝑛) in such a way that a distinguished synthetic
relation 𝑅 holds for 𝑝, 𝑞,… iff a separately defined coordinate relation 𝑅′ holds
for Φ(𝑝), Φ(𝑞),… (see, for example, (5) below). Because the synthetic and co-
ordinate structures are isomorphic, the latter is a kind of map or representation
of the former: they share the same abstract structure.11
However, historically, the analysis of Galilean spacetime did not proceed

like this. Modern analysis of Galilean spacetime (sometimes called “neo-
Newtonian” spacetime or just “Newtonian spacetime”) was developed using
the differential geometry methods developed to study General Relativity:
what are now called “relativistic spacetimes.” This began in the 60s and 70s,
with work by Trautman, Penrose, Stein, Ehlers, Earman, and others (based
on earlier work, such as Cartan’s).12 In Malament (2012, chap. 4), David
Malament provides details of the differential geometry formulation of this
topic. Galilean (or Newtonian) spacetime is defined as a structure of the form

𝒜 = (𝑀,∇, ℎ𝑎𝑏, 𝑡𝑎𝑏), (2)

where𝑀 is a manifold diffeomorphic to ℝ4, ∇ is a flat (torsion-free) affine
connection on𝑀, and ℎ𝑎𝑏, 𝑡𝑎𝑏 are tensor fields on𝑀 satisfying compatibility
conditions, from which one can construct temporal and spatial metrics and
simultaneity surfaces.13

11 To be clear, the synthetic and coordinate structures are isomorphic structures of the same signature,
say 𝜍. This is because it doesn’t make mathematical sense to talk of an isomorphism from 𝐴
to 𝐵 unless they are both 𝜍-structures. E.g., it doesn’t make sense to say a group (𝐺,⊕) is
isomorphic to a ring (𝑅,+,×) outside the special case where × is definable from + or vice
versa. Isomorphisms have to “match up” corresponding relations (operations and constants) in
the signature. In logic, automated theorem proving, and so on, even seemingly small changes
of the signature of the structures in question can make a large difference. For example, the
structure (ℕ, 0, 𝑆,+) is decidable (Presburger 1930), but (ℕ, 0, 𝑆,+,×) is undecidable (Gödel
1931; Tarski 1935). I’m grateful to a referee for mentioning this point, as related ones have arisen
in the philosophy of physics.

12 See Trautman (1966), Stein (1967), Penrose (1968), Earman (1970, 1989), Ehlers (1973), Friedman
(1983). One may also find mathematically precise descriptions in Arnold (1989, chap. 1) and in
Kopczyński and Trautman (1992, 31–32).

13 Here, I am referring to such things as manifolds, diffeomorphisms, affine connections, tangent
spaces, tensor fields, and whatnot. An excellent textbook on differential geometry, oriented
towards advanced physics students, is Schutz (1980). Also, Malament (2012) andWald (1984). For
useful surveys of some of the surrounding philosophical issues, see Huggett and Hoefer (2015)
(absolute vs. relational theories of spacetime) and DiSalle (2020) (inertial frames).
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6 Jeffrey Ketland

The approach we develop here is entirely synthetic. The underlying geo-
metric relations are betweenness (written Bet(𝑝, 𝑞, 𝑟)), simultaneity (written
𝑝 ∼ 𝑞), and sim-congruence (written 𝑝𝑞 ≡∼ 𝑟𝑠): these are relations on points.
Inertial coordinate systems are then proved to exist by a Representation Theo-
rem. An inertial coordinate system Φ is nothing more than an isomorphism
from the synthetic geometrical structure (ℙ, 𝐵, ∼,≡∼) of Galilean spacetime
(with carrier set ℙ) to a suitable “coordinate structure” built on the carrier set
ℝ4. Below, we shall call this standard coordinate structure 𝔾(1,3) (Definition
4). So, we shall obtain, by analogy with (1),

Φ ∶
synthetic structure

⏞⎴⎴⏞⎴⎴⏞(ℙ, 𝐵, ∼,≡∼) →
coordinate structure

⏞⎴⏞⎴⏞𝔾(1,3). (3)

Euclidean geometry, of course, was also first set out synthetically in Euclid’s
Elements. However, Euclid’s Elements does not quite meet modern adequate
standards of formal rigor. In particular, Moritz Pasch (1882) noted that certain
betweenness properties of space were merely implicit in Euclid’s treatment.
Influenced by Pasch and others, the synthetic axiomatization for Euclidean
geometry was first made rigorous in Hilbert (1899), which was modified,
extended, or simplified in a number of ways, one of which is Veblen (1904)
(which extracted the purely betweenness part of Hilbert’s system: sometimes
called the “axioms of order”).
Synthetic axiomatization forMinkowski spacetime geometry appeared soon

after the classic work of Albert Einstein and Hermann Minkowski (i.e., Ein-
stein 1905; Minkowski 1909) in Alfred Robb’s (1911) book. This led to a series
of later synthetic developments, including Robb (1936), Ax (1978), Mundy
(1986), Goldblatt (1987), Schutz (1997), and, most recently, Cocco and Babic
(2021). As is now known, Minkowski spacetime can be axiomatized using
a single binary relation, usually called 𝜆, with 𝑝𝜆𝑞 meaning “points 𝑝 and
𝑞 can be connected by a light signal”—the light-signal relation.14 As the
reader probably knows, this induces a “light cone structure” on the carrier
set of points. So, Minkowski spacetime can be defined as a structure (ℙ, 𝜆)
satisfying certain axioms, and one may prove that there is an isomorphism
Φ ∶ (ℙ, 𝜆) → (ℝ4, 𝜆ℝ4).15 Such an isomorphism is called a “Lorentz coordi-

14 In Goldblatt (1987), a relation of “spacetime orthogonality,” 𝑝𝑞 ⟂ 𝑟𝑠, is used, but ⟂ and 𝜆 are
interdefinable, as Goldblatt shows.

15 Where the standard coordinate relation 𝜆ℝ4 onℝ4 is defined as follows: for any x, y ∈ ℝ4, x𝜆ℝ4y
holds iff∑3

𝑖=1(𝑥
𝑖−𝑦𝑖)2− (𝑥4−𝑦4)2 = 0 (i.e., the Minkowski interval is equal to 0). I have set

𝑐 = 1.

Dialectica vol. 77, n° 2



Axiomatization of Galilean Spacetime 7

nate system.” Then the automorphism group Aut((ℝ4, 𝜆ℝ4)) of (ℝ4, 𝜆ℝ4) is
the Poincaré group.16
Galilean spacetime, however, is the basic spacetime of classical Newtonian

(pre-relativistic) physics. In retrospect, it is a kind of “low energy limit” of
Minkowski spacetime (when we let the speed of light approach infinity and
all the light cones get “squashed” into simultaneity surfaces). But, unlike
the case with Minkowski spacetime, the synthetic approach did not appear
for a long time. As far as I know, the first brief sketch of a synthetic axiom
system for Galilean spacetime appeared in Hartry Field’s Science Without
Numbers (1980, chap. 6), some 80 years after Hilbert’s classic monograph,
The Foundations of Geometry (1899), and close on three hundred years after
Newton’s Principia (1687). Shortly after, John Burgess added further work on
this in Burgess (1984) and then again in Burgess and Rosen (1997). Our work
here is a descendant of and stimulated by theirs.17
The axiom system Gal(1, 3) we shall arrive at can be written as follows (see

table 1 in section 3):

Gal1 BG(4).
Gal2 EG(3)∼.
Gal3 ∼ is an equivalence relation.
Gal4 ≡∼ ⊆ [∼]4.
Gal5 ≡∼ is translation-invariant.

Here, BG(4) is a group of nine axioms, the subsystem of order axioms for
betweenness (see appendix A). And EG(3)∼ is a group of eleven axioms, a rela-
tivized subsystem of axioms for “sim-congruence” and betweenness, obtained
from Tarski’s formulation of Euclidean geometry for three dimensions (see
appendix A). The three further axioms, Gal3, Gal4, and Gal5, “tie together”
these subsystems.18

16 In fact, to be a bit more accurate, I believe it is the “extended” Poincaré group, allowing global
scaling, 𝑥𝜇 ↦ 𝛼𝑥𝜇 (𝛼 ≠ 0), of coordinates. This is because (ℙ, 𝜆) does not have a special “unit
length.”

17 Field states his four axioms very briefly, in a footnote (1980, chaps. 6, 54, n.33). Field remarks,
“Given the Szczerba-Tarski axiom on ‘Bet’, it is quite trivial to impose requirements on the two new
primitives ‘Simul’ and ‘S-Cong’ so as to get the desired representation and uniqueness theorems”
(1980, 54). Although Field takes a slightly different congruence relation as primitive (which he
calls S-cong), I am reasonably sure that Field’s axiom system is definitionally equivalent to the
one given here, Gal(1, 3). I hope to publish the equivalence proof elsewhere. Burgess’s sketch of
the geometry of Galilean spacetime (Burgess 1984; Burgess and Rosen 1997) uses our physical
primitives and I believe Burgess must have separately established this equivalence.

18 [∼]4 is defined to be: {(𝑝, 𝑞, 𝑟, 𝑠) ∣ 𝑝 ∼ 𝑞 ∧ 𝑝 ∼ 𝑟 ∧ 𝑝 ∼ 𝑠}. See definition 12 below.
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8 Jeffrey Ketland

To summarize, then, how the rest of this paper goes, we shall use the two
separate Representation Theorems for BG(4) and EG(3). The first of these
(theorem 62 in appendix B below) asserts the existence of a “global” bijective
coordinate system:

Φ ∶ ℙ → ℝ4, (4)

on any (full) model (ℙ, 𝐵) of BG(4), matching any given “4-frame”𝑂,𝑋, 𝑌, 𝑍, 𝐼
and satisfying the betweenness representation condition, for any points
𝑝, 𝑞, 𝑟 ∈ ℙ:19

𝐵(𝑝, 𝑞, 𝑟) ↔ 𝐵ℝ4(Φ(𝑝), Φ(𝑞), Φ(𝑟)), (5)

where 𝐵ℝ4 is the standard betweenness relation on ℝ4. The second Represen-
tation Theorem (theorem 63 in appendix B) asserts the existence of a global
coordinate system 𝜓 on any (full) model (ℙ, 𝐵, ≡) of three-dimensional Eu-
clidean geometry EG(3), matching a given “Euclidean 3-frame” 𝑂,𝑋, 𝑌, 𝑍 and
satisfying the representation condition for congruence:

𝑝𝑞 ≡ 𝑟𝑠 ↔ 𝜓(𝑝)𝜓(𝑞) ≡ℝ3 𝜓(𝑟)𝜓(𝑠), (6)

where ≡ℝ3 is the standard congruence relation on ℝ3. In our system, the
axioms EG(3) are relativized to simultaneity hypersurfaces, yielding EG(3)∼.
The relativization implements the requirement that each simultaneity hyper-
surface is a three-dimensional Euclidean space.
We can then combine these two Representation Theorems, applied to any

full model𝑀 ⊧2 Gal(1, 3), to obtain the Representation Theorem forGal(1, 3),
which is our main theorem (theorem 55 in section 5). That is, assuming
(ℙ, 𝐵, ∼,≡∼) is a (full) model of Gal(1, 3), the existence of an isomorphism as
stated in (3) above:

Φ ∶
synthetic structure

⏞⎴⎴⏞⎴⎴⏞(ℙ, 𝐵, ∼,≡∼) →
coordinate structure

⏞⎴⏞⎴⏞𝔾(1,3). (7)

The crux of the proof of the main theorem are the Chronology Lemma
(lemma 52) and the Congruence Lemma (lemma 54).

19 A 4-frame is an ordered quintuple of points that are not in the same 3-dimensional hypersurface.
See definition 58 below.
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Axiomatization of Galilean Spacetime 9

1. Definitions

Definition 1. The standard Euclidean inner product ⟨., .⟩𝑛 and norm ‖.‖𝑛
on ℝ𝑛 are defined as follows:20 For x, y ∈ ℝ𝑛, ⟨x, y⟩𝑛 ∶= ∑𝑛

𝑖=1 𝑥
𝑖𝑦𝑖, and

‖x‖𝑛 ∶= √⟨x, x⟩𝑛. The standard Euclidean metrics Δ𝑛 ∶ ℝ𝑛 × ℝ𝑛 → ℝ are
defined as follows:

Δ𝑛(x, y) ∶= ‖x − y‖𝑛. (8)

The standard Euclidean metric space with carrier set ℝ𝑛 is:

𝔼𝔾𝑛
metric ∶= (ℝ𝑛, Δ𝑛). (9)

Definition 2. The following relations are the standard betweenness relation
𝐵ℝ𝑛, standard simultaneity relation ∼ℝ𝑛, standard congruence relation ≡ℝ𝑛,
and standard sim-congruence relation ≡∼

ℝ𝑛 on ℝ𝑛. For x, y, z,u ∈ ℝ𝑛:

𝐵ℝ𝑛(x, y, z) ∶= (∃𝜆 ∈ [0, 1])(y − x = 𝜆(z − x)); (𝑎)
x ∼ℝ𝑛 y ∶= 𝑥𝑛 = 𝑦𝑛; (𝑏)

xy ≡ℝ𝑛 zu ∶= Δ𝑛(x, y) = Δ𝑛(z,u); (𝑐)
xy ≡∼

ℝ𝑛 zu ∶= Δ𝑛(x, y) = Δ𝑛(z,u) & x ∼ℝ𝑛 y & x ∼ℝ𝑛 z & x ∼ℝ𝑛 u. (𝑑)
(10)

For the one-dimensional case, we have two alternative but equivalent defini-
tions. First,𝐵ℝ(𝑥, 𝑦, 𝑧) ∶= (𝑥 ≤ 𝑦 ≤ 𝑧); second,𝐵ℝ(𝑥, 𝑦, 𝑧) ∶= |𝑥−𝑦|+|𝑦−𝑧| =
|𝑥 − 𝑧|.21

Definition 3. It will be useful below to define the following special five points
in ℝ4:

O ∶=
⎛
⎜
⎜
⎝

0
0
0
0

⎞
⎟
⎟
⎠

, X ∶=
⎛
⎜
⎜
⎝

1
0
0
0

⎞
⎟
⎟
⎠

, Y ∶=
⎛
⎜
⎜
⎝

0
1
0
0

⎞
⎟
⎟
⎠

, Z ∶=
⎛
⎜
⎜
⎝

0
0
1
0

⎞
⎟
⎟
⎠

, I ∶=
⎛
⎜
⎜
⎝

0
0
0
1

⎞
⎟
⎟
⎠

. (11)

20 We use the abbreviation x = (𝑥1,… ,𝑥𝑛) for 𝑛-tuples inℝ𝑛. Similarly, for y, z,…. Hopefully, it
will be clear that these don’t mean powers of 𝑥.

21 The second of these, in fact, generalizes to 𝑛 > 1 if we have a metric function: 𝐵ℝ𝑛(x, y, z) ∶=
Δ𝑛(x, y) + Δ𝑛(y, z) = Δ𝑛(x, z).
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10 Jeffrey Ketland

In other words, the origin and the “unit points” on the four axes. I call the
ordered tuple O,X,Y,Z, I the standard (4-)frame in ℝ4.

Definition 4. The standard coordinate structures are:22

𝔹𝔾𝑛 Betweenness geometry in 𝑛 dimensions over ℝ ∶= (ℝ𝑛, 𝐵ℝ𝑛).
𝔼𝔾𝑛 Euclidean space in 𝑛 dimensions over ℝ ∶= (ℝ𝑛, 𝐵ℝ𝑛, ≡ℝ𝑛).
𝔾(1,𝑛) Galilean spacetime in 𝑛 + 1 dimensions over ℝ ∶= (ℝ𝑛+1, 𝐵ℝ𝑛+1, ∼ℝ𝑛+1, ≡∼

ℝ𝑛+1).

Our central interest is 𝔾(1,3), the standard coordinate structure for four-
dimensionalGalilean spacetime. The carrier set of 𝔾(1,3) isℝ4. Its distinguished
relations are betweenness (10, a), simultaneity (10, b), and sim-congruence
(10, d) on ℝ4. Note that 𝔾(1,3) does not carry a metric or distance function.

2. Derivation of (Extended) Galilean Transformations

What is the symmetry group of the standard coordinate structure 𝔾(1,3) for
Galilean spacetime?We will see that its symmetry group is a certain Lie group
𝒢𝑒(1, 3), a 12-dimensional Lie group that extends the usual Galilean group
𝒢(1, 3) by two additional parameters, which determine coordinate scalings.

Definition 5. 𝐴 is an element of the extendedGalileanmatrix groupMat𝑒Gal(4)
if and only if 𝐴 is a 4 × 4matrix with real entries and has the (block matrix)
form

𝐴 = (𝛼1𝑅 ⃗𝑣
0 𝛼2

), (12)

where

𝑅 = (
𝑅11 𝑅12 𝑅13
𝑅21 𝑅22 𝑅23
𝑅31 𝑅32 𝑅33

) (13)

is in 𝑂(3), ⃗𝑣 = (𝑣1, 𝑣2, 𝑣3) ∈ ℝ3, and 𝛼1, 𝛼2 ∈ ℝ − {0}. The 𝑂(3) matrix 𝑅 is
called the rotation of 𝐴, the 3-vector ⃗𝑣 is called the (relative) velocity of 𝐴, the
constant 𝛼1 is called the spatial scaling factor of 𝐴, and the constant 𝛼2 is the
temporal scaling factor of 𝐴.

22 Regarding the definitions of 𝔹𝔾𝑛, 𝔼𝔾𝑛 and 𝔾(1,𝑛). These still make sense if we replaceℝ in
the definition by a Euclidean ordered field 𝐹 (an ordered field where all non-negative elements
are squares). Cf. Szczerba and Tarski (1979, 160, Definition 1.5), who call a space 𝔹𝔾𝑛(𝐹) a
“Cartesian affine space” over 𝐹.
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Axiomatization of Galilean Spacetime 11

Lemma 6. Mat𝑒Gal(4) is a subgroup of 𝐺𝐿(4).

Proof. This is a routine verification. The main part is to check thatMat𝑒Gal(4)
is closed under matrix multiplication and each element inMat𝑒Gal(4) has an
inverse inMat𝑒Gal(4).

Definition 7. Let ℎ ∶ ℝ4 → ℝ4.We say that ℎ is an extendedGalilean transfor-
mation just if there exists an extended Galilean matrix 𝐴 and a displacement
d ∈ ℝ4 such that, for all x ∈ ℝ4,

ℎ(x) = 𝐴x + d. (14)

Lemma 8. The set of extended Galilean transformations forms a group.

Proof. This is a detailed verification of the group properties, analogous to the
above.

Definition 9. 𝒢𝑒(1, 3) ∶= the group of extended Galilean transformations.

Theorem 10 (Automorphisms of 𝔾(1,3)). Aut(𝔾(1,3)) = 𝒢𝑒(1, 3).

Proof. I give a sketch of the proof. To show 𝒢𝑒(1, 3) ⊆ Aut(𝔾(1,3)), we verify
that each extended Galilean transformation is a symmetry of 𝔾(1,3). Since𝔹𝔾4

is a reduct of 𝔾(1,3), and each extended Galilean transformation is affine, it
follows that betweenness is invariant. The special form of extended Galilean
matrices then ensures that simultaneity and sim-congruence are invariant.
To show that Aut(𝔾(1,3)) ⊆ 𝒢𝑒(1, 3) is more involved. Since 𝔹𝔾4 is a reduct

of 𝔾(1,3), it follows that any symmetry ℎ of 𝔾(1,3) must be affine, and so there
exists a 𝐺𝐿(4)matrix 𝐴 and displacement d ∈ ℝ4 such that, for any x ∈ ℝ4,

ℎ(x) = 𝐴x + d. (15)

To determine the sixteen components 𝐴𝑖𝑗 of 𝐴, one must then examine the
conditions that simultaneity and sim-congruence be invariant. By examining
certain choices of points, the invariance of simultaneity enforces that 𝐴must
have the form

𝐴 = (𝐶 ⃗𝑣
0 𝛼2

) , (16)
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where 𝐶 is a 3 × 3matrix, and 𝛼2 is a non-zero constant. The invariance of
sim-congruence enforces that the upper 3 × 3 block 𝐶must be a multiple 𝛼1𝑅
of an 𝑂(3)matrix 𝑅 by a non-zero real factor 𝛼1:

𝐴 = (𝛼1𝑅 ⃗𝑣
0 𝛼2

) . (17)

But this is an extended Galilean matrix. Consequently, Aut(𝔾(1,3)) ⊆ 𝒢𝑒(1, 3).
Together, these results imply that Aut(𝔾(1,3)) = 𝒢𝑒(1, 3).

The constants 𝛼1, 𝛼2 in any extended Galilean matrix 𝐴 determine scalings
of the spatial and temporal coordinates, respectively. So, given some 𝐴 in the
extended Galilean matrix group and any ( ⃗𝑥, 𝑡) ∈ ℝ4,

𝐴( ⃗𝑥, 𝑡) = (𝛼1𝑅 ⃗𝑥 + ⃗𝑣𝑡, 𝛼2𝑡). (18)

Let’s set the relative rotation 𝑅 to be 𝕀 and set the relative velocity ⃗𝑣 to be
zero:

𝐴( ⃗𝑥, 𝑡) = (𝛼1 ⃗𝑥, 𝛼2𝑡). (19)

Thus, the spatial coordinates are scaled by 𝛼1, and the temporal coordinate
is scaled by 𝛼2. Instead, let us set these scalings 𝛼1, 𝛼2 at 1 and consider the
image ( ⃗𝑥′, 𝑡′) of the point with coordinates ( ⃗𝑥, 𝑡) under an extended Galilean
transformation:

⃗𝑥′ = 𝑅 ⃗𝑥 + ⃗𝑣𝑡 + ⃗𝑑, (20)

𝑡′ = 𝑡 + 𝑑𝑡. (21)

These are the usual Galilean transformations as given in physics textbooks,
in usually simplified form (e.g., Sears, Zemansky and Young 1979, 252; Lon-
gair 1984, 87; or Rindler 1977, 3). The conventional Galilean group 𝒢(1, 3) is
normally understood to be this 10-parameter Lie group: the ten parameters
are these: four parameters for the spatial and temporal translations, d; three
parameters (i.e., determined by the three Euler angles) for the rotation matrix
𝑅; three parameters for the velocity ⃗𝑣.
As we have defined it, the extendedGalilean group𝒢𝑒(1, 3) is a 12-parameter

Lie group: the two additional parameters, 𝛼1, 𝛼2, permit coordinate scalings.
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Axiomatization of Galilean Spacetime 13

These two extra degrees of freedom are a consequence of our synthetic treat-
ment, and this is completely analogous to Euclidean betweenness and congru-
ence being invariant under coordinate scaling. Indeed, 𝛼1 and 𝛼2 are gauge
parameters in the oldest sense of the word.

3. Axiomatization of Galilean Spacetime: Gal(1, 3)

To begin, we state the informal physical meanings of our three primitive
symbols:23

Betweenness Predicate: Bet. Bet(𝑝, 𝑞, 𝑟)means that 𝑞 lies on
a straight line inclusively between 𝑝 and 𝑟 (allowing the cases 𝑞 = 𝑝
and 𝑞 = 𝑟).

Simultaneity Predicate: ∼. 𝑝 ∼ 𝑞means that the points 𝑝, 𝑞 are
simultaneous.

Sim-Congruence Predicate: ≡∼. 𝑝𝑞 ≡∼ 𝑟𝑠 means the points
𝑝, 𝑞, 𝑟, 𝑠 are simultaneous, and the length of the segment 𝑝𝑞 is equal
to the length of the segment 𝑟𝑠.

We are now ready to state the (synthetic) axioms for Galilean spacetime.

Definition 11. The theory Gal(1, 3) is a two-sorted theory with
sorts {point,pointset} and variables Varpoint = {𝑝1, 𝑝2,… } and
Varpointset = {X1,X2,… }. The signatures 𝜎Gal and 𝜎Gal,∈ are given by
𝜎Gal = {Bet, ∼, ≡∼} and 𝜎Gal,∈ = {Bet, ∼, ≡∼, ∈}. By 𝐿(𝜎Gal), I shall mean
the first-order language with restricted signature 𝜎Gal over the single sort
point. Its atomic formulas are of the four forms: 𝑝1 = 𝑝2, Bet(𝑝1, 𝑝2, 𝑝3),
𝑝1 ∼ 𝑝2, and 𝑝1𝑝2 ≡∼ 𝑝3𝑝4, where “𝑝𝑖” are point variables, and the remaining
formulas are built up using the connectives ¬,∧, ∨,→,↔, and quantifiers
∀ and ∃, as per the usual recursive definition of “formula of 𝐿(𝜎).”24 By
𝐿(𝜎Gal,∈), I mean the “monadic second-order” language, with signature 𝜎Gal,∈.
Its atomic sentences include those above along with formulas: 𝑝𝑖 ∈ X𝑗 and
X𝑖 = X𝑗. (A parser for this language counts the strings 𝑝𝑖 = X𝑗, X𝑗 = 𝑝𝑖, and
X𝑖 ∈ 𝑝𝑗 and 𝑝𝑖 ∈ 𝑝𝑗 as ill-formed.) The remaining formulas are built up using

23 Cf. the “interpretive principles” given in Malament (2012, 120–121).
24 Informally, we liberalize notation for point variables, occasionally using “𝑝,” “𝑞,” “𝑟,” “𝑠,” “ᵆ,”

“𝑥,” “𝑦,” “𝑧,” and the like, with natural number subscripts.
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14 Jeffrey Ketland

the connectives ¬,∧, ∨,→,↔, and quantifiers ∀ and ∃, including the new
quantifications ∀X𝑖 𝜑 and ∃X𝑖 𝜑.

In discussing a full model𝑀 of, say, BG(4), I shall generally write “𝑀 ⊧2
BG(4)” to make it clear that 𝑀 is a full model of BG(4). In other words, if
𝑀 = (ℙ,… ), then𝑀 ⊧2 ∀X𝑖 𝜑(X𝑖) if and only if, for every subset 𝑈 ⊆ ℙ, 𝜑[𝑈]
is true in𝑀.

Definition 12. (𝑝, 𝑞, 𝑟, 𝑠) ∈ [∼]4 iff 𝑝 ∼ 𝑞, 𝑝 ∼ 𝑟, 𝑝 ∼ 𝑠.

Definition 13. The (non-logical) axioms of Gal(1, 3) are as follows:

Table 1: The axiom system Gal(1, 3).
Gal1 BG(4).
Gal2 EG(3)∼.
Gal3 ∼ is an equivalence relation.
Gal4 ≡∼ ⊆ [∼]4.
Gal5 ≡∼ is translation-invariant.

BG(4) is really an axiom group of nine axioms for Bet.25 These are given
in definition 56 in appendix A. But, to simplify the description here, one may
take their conjunction.26 EG(3) is also an axiom group, this time of eleven

25 I use the moniker “BG” to mean “betweenness geometry” (𝑛 dimensions) for several reasons.
First, because there doesn’t seem to be a standard name for these geometries. Second, they are
sometimes called “affine geometries,” but the word “affine” has too many meanings, including
two different meanings, each having nothing to do with the betweenness relation. These are
“affine plane” (see, e.g., Bennett 1995) and “affine space” (see, e.g., Gallier 2011). Sometimes, the
terminology “ordered geometry” is used (Pambuccian 2011). But “OG” seems to me ugly. Since
the terminology is not entirely uniform, I use “betweenness geometry” and, hence, BG(4), etc. I
should note that these axiom systems contain Euclid’s Parallel Postulate in some form.

26 The system BG(4) corresponds precisely to what Burgess called GEOM4 in Burgess (1984). The
system BG(4) also corresponds to what Szczerba and Tarski calledGA∗4+Euclid in Szczerba and
Tarski (1979, 1965). The term “GA” is used to mean a system of absolute or neutral geometry (i.e.,
without the Parallel Postulate), which is why (Euclid) is added. Note that (Euclid) is formulated
entirely using Bet, and congruence does not appear. The subscript denotes the dimension, and
the asterisk denotes that the axiom system is second-order; this means the Continuity Axiom is
second-order rather than a scheme. A system essentially equivalent toGA∗3 is studied carefully in
the monograph Borsuk and Smielew (1960). The axioms of BG(4) are the result of simplifying
the categorical system of “order axioms” given in Veblen (1904), where the relevant categoricity
or representation theorem (i.e., our theorem 62 in appendix B) was first given.
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Axiomatization of Galilean Spacetime 15

axioms. These are given in definition 57 in appendix A. The axiom EG(3)∼
listed above requires further explanation.27
This construction is sketched, very briefly, in Field (1980, 54, n.33). First,

one replaces ≡ by ≡∼ in each EG(3) axiom. Next, one relativizes each axiom
to the formula 𝑝 ∼ 𝑧 (treating 𝑧 as a parameter) so that the resulting axiom
says that it holds for all points simultaneous with 𝑧.28 Next, one prefixes the
result with ∀𝑧 and then takes the conjunction of the axioms. For example,
under relativization, the ≡-Transitivity axiom (E3) and the Pasch axiom (E6)
become:

≡∼-Transitivity ∀𝑧[(∀𝑝, 𝑞, 𝑟, 𝑠, 𝑡, 𝑢 ∼ 𝑧) (𝑝𝑞 ≡∼ 𝑟𝑠 ∧ 𝑝𝑞 ≡∼ 𝑡𝑢 → 𝑟𝑠 ≡∼

𝑡𝑢)].
Pasch ∀𝑧[(∀𝑝, 𝑞, 𝑟, 𝑠, 𝑢 ∼ 𝑧) (Bet(𝑝, 𝑞, 𝑟) ∧ Bet(𝑠, 𝑢, 𝑞) → (∃𝑥 ∼

𝑧) (Bet(𝑟, 𝑥, 𝑠) ∧ Bet(𝑝, 𝑢, 𝑥)))].

In addition to the given non-logical axioms, we also have the customary
axioms for second-order logic (table 2):

Table 2: Axioms for second-order logic.
Comprehension ∃X1 ∀𝑝 (𝑝 ∈ X1 ↔ 𝜑) (variable X1 not free in 𝜑).
Extensionality ∀X1 ∀X2 (∀𝑝 (𝑝 ∈ X1 ↔ 𝑝 ∈ X2) → X1 = X2).

I shall, in effect, however, assume an ambient set theory.29 The reason is
that I am not concerned with narrow proof-theoretic matters concerning
the whole theory (for example, completeness) but rather with establishing
some facts about the full models of the theory Gal(1, 3). Since we consider
just full models, Comprehension and Extensionality are satisfied more or less

27 EG(3) itself corresponds to the second-order version of the three-dimensional version of Tarski’s
system for synthetic Euclidean geometry in Tarski (1959), somewhat simplified in Tarski and
Givant (1999). As with “BG,” I use the moniker “EG” to mean “Euclidean geometry.” In my
notation, Tarski’s 1959 paper is mostly about the first-order theory EG0(2), which is EG(2)
“little’s brother.”

28 The relativization is more precisely defined as a translation ∘, which acts as the identity on atomic
formulas, which commutes with the Boolean logical connectives, and, for quantifiers, maps
∀𝑝𝜑 to (∀𝑝 ∼ 𝑧)𝜑∘, maps ∃𝑝𝜑 to (∃𝑝 ∼ 𝑧)𝜑∘, maps ∀X𝜑 to (∀X ⊆ Σ𝑧)𝜑∘, and maps ∃X𝜑 to
(∃X ⊆ Σ𝑧)𝜑∘.

29 See also Borsuk and Smielew (1960, 7–8) on this topic.
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by fiat.30 This is completely analogous to our approach in giving the usual
proof, essentially that of Dedekind (1888), of the categoricity of second-order
arithmetic PA2, although, as a matter of fact, the categoricity of PA2 can be
“internalized” as a proof inside PA2 itself (see Simpson and Yokoyama 2013).
The three Galilean axioms Gal3, Gal4, and Gal5 are the glue that holds

together the betweenness axioms BG(4) and the Euclidean axioms EG(3)∼.
The content of Gal3 and Gal4 seems evident. The final axiom Gal5 is the
sole axiom that needs some further explanation.31 This axiom expresses the
translation invariance of the ≡∼ relation and may be expressed using vector
notation as follows:

𝑝𝑞 ≡∼ 𝑟𝑠 → (𝑝 + v)(𝑞 + v) ≡∼ (𝑟 + v)(𝑠 + v). (22)

In other words, if the (simultaneous) segments 𝑝𝑞 and 𝑟𝑠 have the same
length, then the (simultaneous) segments (𝑝 + v)(𝑞 + v) and (𝑟 + v)(𝑠 + v)
have the same length for any vector v.32
An equivalent axiom can be expressed solely using the primitives Bet, ∼,

and ≡∼ and quantifying over points. Roughly, the axiom Gal5 is equivalent to
the following rather long-winded claim:

If 𝑝, 𝑞, 𝑟, 𝑠, and 𝑝′, 𝑞′, 𝑟′, 𝑠′ are points such that the vectors v𝑝,𝑝′, v𝑞,𝑞′,
v𝑟,𝑟′, v𝑠,𝑠′ are all equal and 𝑝𝑞 ≡∼ 𝑟𝑠, then 𝑝′𝑞′ ≡∼ 𝑟′𝑠′.

Note that the equality clause “v𝑝,𝑝′ = v𝑞,𝑞′” means “𝑝, 𝑞, 𝑝′, 𝑞′ is a parallel-
ogram,” and the 4-place predicate “𝑝1, 𝑝2, 𝑝3, 𝑝4 is a parallelogram” can be
defined using Bet (see definition 15).
The second-order theories BG(4) and EG(3), with their point set variables,

contain the second-order Continuity Axiom (Tarski 1959, 18):

[∃𝑟 (∀𝑝 ∈ X1) (∀𝑞 ∈ X2)Bet(𝑟, 𝑝, 𝑞)]
→ [∃𝑠 (∀𝑝 ∈ X1) (∀𝑞 ∈ X2)Bet(𝑝, 𝑠, 𝑞)].

(23)

30 A suitable “ambient set theory,” a system of axioms for the existence of sets, where the points
will now be urelements or atoms (i.e., not sets or classes), and where comprehension, separation,
and replacement schemes can be applied to any urelement predicate (e.g., Bet and so on), is
given in Ketland (2021). The ambient set theory is called ZFU𝑉(𝑇) in Field (1980, 17).

31 The axiom Gal5 is so obvious that it occurred to me that it might indeed be provable from the
remainder. However, I’ve not found a proof of this. So, I retain it. It is needed to show that the
vector translation of a Galilean 4-frame is also a Galilean 4-frame (lemma 53 below).

32 The fact that if the points 𝑝, 𝑞, 𝑟, 𝑠 are simultaneous, then the points 𝑝 + v, 𝑞 + v, 𝑟 + v, and
𝑠 + v are also simultaneous is given in lemma 45 below.
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Axiomatization of Galilean Spacetime 17

This geometrical continuity axiom, it may be noted, is closely analogous to
the “Dedekind Cut Axiom,” which may be used as an axiom in the formaliza-
tion of the second-order theory ALG of real numbers:33

(∀X1 ⊆ ℝ) (∀X2 ⊆ ℝ) (X1 ≠ ∅ ∧ X2 ≠ ∅ ∧
X1 “precedes” X2

⏞⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⏞(∀𝑥 ∈ X1) (∀𝑦 ∈ X2) (𝑥 ≤ 𝑦)

→ ∃𝑠
the point 𝑠 “cuts” X1 and X2

⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏞(∀𝑥 ∈ X1) (∀𝑦 ∈ X2) (𝑥 ≤ 𝑠 ∧ 𝑠 ≤ 𝑦)) .

(24)

The second-order theories BG(4) and EG(3) are, foundationally speaking,
strong, and both interpret ALG. They have first-order versions—their “little
brothers,” so to speak, which I shall call BG0(4) and EG0(3)—obtained by
replacing the single Continuity Axiom by infinitely many instances of the
Continuity axiom scheme: in these instances, there are only point variables.
The little brothers,BG0(4) and EG0(3), aremeta-mathematically somewhat

different from their big brothers. In particular, they are, in fact, complete (and,
since they are recursively axiomatized, decidable), as established by a cele-
brated theorem of Alfred Tarski (1951). But the big brothers are incomplete
because they interpret Peano arithmetic (PA), and then Gödel’s incomplete-
ness results apply. This observation leads to an important difficulty faced by
Field’s nominalism:
Remark 14. The second-order nature of BG(4)—i.e., its point variables range
over points, and its set variables range over sets of points—is what lies at
the root of the technical problem for Hartry Field’s nominalist program
(1980) highlighted, first informally by John Burgess, Saul Kripke, and Yian-
nis Moschovakis, and then, in detail, by Stewart Shapiro in (1983), and also
mentioned in Burgess (1984, last section). The required representation theo-
rem indeed holds for BG(4) with respect to full models (and from this, the
other representation theorems can be built up, just as we do below). This is
theorem 62 below. But, unfortunately, adding additional set theory axioms

33 I follow Burgess (1984) in calling this theory ALG. A standard axiomatization of ALG is given in
Apostol (1967, 18, 20, 25). An equivalent axiomatization appears in Rudolf Carnap’s neglected
textbook Carnap (1958, sec. 45, 183–185). See also Tarski (1946, 215) for a similar and equivalent
formulation to (24), but Tarski uses the notion “the set 𝑋 strictly precedes the set 𝑌” (using
< instead of ≤) and “𝑠 separates the sets 𝑋 and 𝑌” (again using < instead of ≤). But these
Continuity axioms are equivalent. And both are equivalent to the usual Dedekind cut axiom
given in an analysis textbook: “any non-empty bounded subset of ℝ has a supremum” (e.g.,
Apostol 1967, 25).
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to BG(4) is non-conservative. This is because BG(4) interprets Peano arith-
metic. And then, by Gödel’s incompleteness results (Gödel 1931; Raatikainen
2020), there is a consistency sentence Con(BG(4)) in the language of BG(4)
itself such that BG(4) does not prove Con(BG(4)). Con(BG(4)) is indeed true
in the standard coordinate structure since BG(4) is consistent (for it has a
model). This sentence becomes provable when further set axioms are added.
On the other hand, BG(4) has a little brother, BG0(4), which is a first-order
theory (we replace the Continuity Axiom by infinitely many instances of the
Continuity axiom scheme). Then, conservativeness holds for BG0(4) because
it is complete! (As we know from the aforementioned celebrated result by
Tarski 1951.) But now the required representation theorem does not hold for
the little brother BG0(4). Instead, a rather different representation theorem
holds, replacing ℝ𝑛 by 𝐹𝑛 for “some real-closed field 𝐹.” This is a revision of
theoretical physics, for physics works with amanifold, a point set equipped
with a system of charts, which are maps into ℝ𝑛. Field’s program required
both conservativeness (to vindicate the claimed “instrumentalist nature” of
mathematics) and representation (to vindicate the claimed “purely represen-
tational” feature of applied mathematics). But the technical snag is that we
cannot have both conservativeness and the representation theorem.

4. Main Results About Gal(1, 3)

4.1. Definitions: Betweenness Geometry

Definition 15. The formulaBet(𝑝, 𝑞, 𝑟)∨Bet(𝑞, 𝑟, 𝑝)∨Bet(𝑟, 𝑝, 𝑞) expresses
that points 𝑝, 𝑞, 𝑟 are collinear. Assuming 𝑝 ≠ 𝑞, we use ℓ(𝑝, 𝑞) to mean the
set of points collinear with 𝑝 and 𝑞, i.e., the line through 𝑝, 𝑞. It can be proved
in BG(4) that each line is determined by exactly two points. We may express
notions of coplanarity, cohyperplanarity, and so on through all positive integer
dimensions using formulas that I write as co𝑛(𝑝1,… , 𝑝𝑛+2).34 So, co1(𝑝, 𝑞, 𝑟)
means that 𝑝, 𝑞, 𝑟 are collinear; co2(𝑝, 𝑞, 𝑟, 𝑠)means that 𝑝, 𝑞, 𝑟, 𝑠 are coplanar;
and so on through higher dimensions. Lines ℓ(𝑝, 𝑞) and ℓ(𝑟, 𝑠) are parallel if
and only if co2(𝑝, 𝑞, 𝑟, 𝑠) and either ℓ(𝑝, 𝑞) = ℓ(𝑟, 𝑠), or ℓ(𝑝, 𝑞) and ℓ(𝑟, 𝑠) do
not intersect (i.e., have no point in common). For this, wewriteℓ(𝑝, 𝑞) ∥ ℓ(𝑟, 𝑠).
Four distinct points 𝑝, 𝑞, 𝑟, 𝑠 form a parallelogram just if ℓ(𝑝, 𝑞) ∥ ℓ(𝑟, 𝑠) and

34 The precise definitions of the predicates co𝑛 are given in Szczerba and Tarski (1979, 190).
(Szczerba and Tarski call these predicates L𝑛.) The definition is recursive: for 𝑛 > 1, each co𝑛 is
defined in terms of the previous ones. These definitions are due to Kordos (1969).
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ℓ(𝑝, 𝑠) ∥ ℓ(𝑞, 𝑟) (see Bennett 1995, 49). The notion of what I call a 4-frame is
given below (definition 58, in appendix B): an ordered quintuple 𝑂,𝑋, 𝑌, 𝑍, 𝐼
that do not lie in the same 3-dimensional space.

The theory BG(4) proves the existence of a 4-frame: this is simply the Lower
Dimension Axiom (the axioms are listed in appendix A). It can be proved
in BG(4) that, given a line ℓ and a point 𝑝, there is a unique line ℓ′ parallel
to ℓ and containing 𝑝 (this is called Playfair’s Axiom and is an equivalent of
Euclid’s Parallel Postulate). From Playfair’s Axiom, it can be proved in BG(4)
that ∥ is an equivalence relation. A number of other theorems from plane
and solid geometry can be established, including Desargues’s Theorem and
Pappus’s Theorem. See Bennett (1995) for an explanation of these theorems.
It can be proved that there is a bijection between any pair of lines. The claims
mentioned so far are sufficient (the assumptions required include Desargues’s
Theorem and Pappus’s Theorem) to establish that, given distinct parameters
𝑝, 𝑞, the line ℓ(𝑝, 𝑞) is isomorphic to an ordered field.35 The Continuity Axiom
of BG(4) then ensures that this field is order-complete. From this, we conclude
that there is a (unique) isomorphism 𝜑𝑝,𝑞 ∶ ℓ(𝑝, 𝑞) → ℝ, i.e., 𝜑𝑝,𝑞(𝑝) = 0 and
𝜑𝑝,𝑞(𝑞) = 1. See also the proof sketch for theorem 62 below.

4.2. Definitions: Galilean Geometry

Turning to the system Gal(1, 3), we need separate definitions of notions per-
taining to simultaneity (∼) and sim-congruence (≡∼).

Definition 16. A time axis 𝑇 is a line ℓ(𝑝, 𝑞), where 𝑝 ≁ 𝑞.

Definition 17. A simultaneity hypersurface Σ𝑝 is the set {𝑞 ∣ 𝑞 ∼ 𝑝} of points
simultaneous with 𝑝.

Beyond the notion of a 4-frame, we need a few more specialized notions of
“frame” for Galilean spacetime.

Definition 18 (sim 4-frame). A sim 4-frame is a sequence of five points
𝑂,𝑋, 𝑌, 𝑍, 𝐼 such that 𝑂,𝑋, 𝑌, 𝑍 are simultaneous and not coplanar, and 𝐼 is
not simultaneous with 𝑂. A sim 4-frame is automatically a 4-frame.

35 The required definitions of geometrical addition + and geometrical multiplication × (which go
back to Hilbert 1899) are given in Bennett (1995). The definition of the order on a fixed line in
terms of Bet is given in Tarski (1959, proof of theorem 1).
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Definition 19 (Euclidean sim 3-frame). A Euclidean sim 3-frame is a se-
quence of four points 𝑂,𝑋, 𝑌, 𝑍 that are simultaneous, are not co2, and
𝑂𝑋, 𝑂𝑌, 𝑂𝑍 have the same length and are mutually perpendicular. That
is, 𝑂𝑋 ≡∼ 𝑂𝑌, 𝑂𝑋 ≡∼ 𝑂𝑍, and 𝑂𝑌 ≡∼ 𝑂𝑍; and 𝑂𝑋 ⟂∼ 𝑂𝑌, 𝑂𝑋 ⟂∼ 𝑂𝑍, and
𝑂𝑌 ⟂∼ 𝑂𝑍.36

Definition 20 (Galilean 4-frame). A Galilean 4-frame is a sequence of
five points 𝑂,𝑋, 𝑌, 𝑍, 𝐼 that are a sim 4-frame and such that the four points
𝑂,𝑋, 𝑌, 𝑍 are a Euclidean sim 3-frame. Note that 𝑂 ≁ 𝐼, and then the line
ℓ(𝑂, 𝐼) is called the time axis of the Galilean 4-frame. A Galilean 4-frame is
automatically a 4-frame. We shall simply call it a Galilean frame.

4.3. Soundness

It is straightforward to demonstrate that Gal(1, 3) is true in the coordinate
structure 𝔾(1,3) by verifying that each axiom of Gal(1, 3) is true in 𝔾(1,3).

Lemma 21 (Soundness Lemma). 𝔾(1,3) ⊧2 Gal(1, 3).

4.4. Lemmas

Lemma 22. Given a point 𝑝 and a time axis 𝑇, there is a unique line ℓ′ ∥ 𝑇
st 𝑝 ∈ ℓ′. (This is Playfair’s Axiom, a theorem of BG(4), and an equivalent of
Euclid’s parallel postulate.)

Lemma 23. Any five simultaneous points are co3 (i.e., cohyperplanar3).

Proof. This follows from the Upper Dimension Axiom in EG(3)∼. This asserts
that, for a fixed simultaneity hypersurface Σ𝑧, any five points in Σ𝑧 are co3.
Hence, any five simultaneous points are co3.

Lemma 24 (Non-Triviality). There are at least two non-simultaneous points.

Proof. By the Lower Dimension axiom in BG(4), there is a 4-frame of five
points, 𝑂,𝑋, 𝑌, 𝑍, 𝐼, which are not co3. By lemma 23, any five simultaneous

36 Perpendicularity 𝑂𝑋 ⟂∼ 𝑂𝑌, for three distinct simultaneous points 𝑂,𝑋,𝑌, is defined just
as in definition 59 in appendix B, but replacing the ordinary congruence predicate ≡ by the
sim-congruence predicate ≡∼.
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points are co3. If 𝑂 ∼ 𝑋 ∼ 𝑌 ∼ 𝑍 ∼ 𝐼, they’d be co3, a contradiction. So,
there are at least two non-simultaneous points.

Lemma 25 (Galilean Frame Lemma). There is a Galilean frame 𝑂,𝑋, 𝑌, 𝑍, 𝐼.

Proof. By lemma 24, let 𝑂, 𝐼 be two non-simultaneous points. By EG(3)∼,
Euclidean three-dimensional geometry holds on simultaneity hypersurface
Σ𝑂. So, there exists 𝑂,𝑋, 𝑌, 𝑍, a Euclidean sim 3-frame in Σ𝑂. Since 𝑂 and 𝐼
are not simultaneous, 𝑂,𝑋, 𝑌, 𝑍, 𝐼 form a Galilean frame (whose time axis is
ℓ(𝑂, 𝐼)).

4.5. Vector Methods

In the first part of this section, we first assume that we are considering a full
model𝑀 ⊧2 BG(4), with𝑀 = (ℙ, 𝐵) (i.e., 𝐵 ⊆ ℙ3 is the interpretation in𝑀 of
the predicate Bet). And then, we further assume we are considering a full
model 𝑀 ⊧2 Gal(1, 3), with 𝑀 = (ℙ, 𝐵, ∼,≡∼). We assume the material in
appendix D, which introduces the new sorts: reals and vectors.37 The vector
displacement from𝑝 to 𝑞 is written: v𝑝,𝑞.38 In particular, recall that, by theorem
68, the vector space 𝕍 of displacements is isomorphic to ℝ4 (as a vector
space).39
Since𝑀 ⊧2 BG(4), we know, by theorem 62, that there exists a coordinate

system Φ ∶ ℙ → ℝ4 on𝑀, i.e., an isomorphism Φ ∶ (ℙ, 𝐵) → (ℝ4, 𝐵ℝ4).

Definition 26. Let 𝑂,𝑋, 𝑌, 𝑍, 𝐼 be a 4-frame in𝑀. Define the four vectors:

e1 ∶= v𝑂,𝑋; e2 ∶= v𝑂,𝑌; e3 ∶= v𝑂,𝑍; e4 ∶= v𝑂,𝐼. (25)

Lemma 27. {e1, e2, e3, e4} is a basis for 𝕍.

This is established inside the detailed proof of theorem 68 below.

37 See also Malament (2009) for a nice exposition of these ideas.
38 Some geometry texts (e.g., Coxeter 1969, 213) will write 𝑝𝑞. E.g., Chasles’s Relation then becomes

𝑝𝑞 + 𝑞𝑟 = 𝑝𝑟.
39 I am grateful to a referee for bringing to my attention Saunders (2013), whose discussion of

Galilean spacetime uses similar vector methods and the notion of affine space.
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Definition 28. Given a coordinate system Φ on𝑀, we can define the associ-
ated 4-frame, 𝑂,𝑋, 𝑌, 𝑍, 𝐼 of points in𝑀:

𝑂 ∶= Φ−1(O), 𝑋 ∶= Φ−1(X), 𝑌 ∶= Φ−1(Y),
𝑍 ∶= Φ−1(Z), 𝐼 ∶= Φ−1(I).

(26)

Definition 29. Given a coordinate system Φ, we define four basis vectors:

eΦ1 ∶= v𝑂,𝑋; eΦ2 ∶= v𝑂,𝑌; eΦ3 ∶= v𝑂,𝑍; eΦ4 ∶= v𝑂,𝐼. (27)

Lemma 30. {eΦ1 , eΦ2 , eΦ3 , eΦ4 } is a basis for 𝕍.

This is a corollary of lemma 27.
Given a coordinate system Φ and a point 𝑝, the four components of Φ(𝑝)

are written as follows:

Φ(𝑝) =
⎛
⎜
⎜
⎝

Φ1(𝑝)
Φ2(𝑝)
Φ3(𝑝)
Φ4(𝑝)

⎞
⎟
⎟
⎠

. (28)

Lemma 31. For any point 𝑝, we have:

v𝑂,𝑝 =
4
∑
𝑎=1

Φ𝑎(𝑝) eΦ𝑎 . (29)

Proof. Consider some of the details of the proof of the Representation Theo-
rem for BG(4) (see Theorem 62 below). Examining the vector v𝑂,𝑝 from the
origin 𝑂 to 𝑝, one can see that:

v𝑂,𝑝 = v𝑂,𝑝𝑋 + v𝑂,𝑝𝑌 + v𝑂,𝑝𝑍 + v𝑂,𝑝𝐼, (30)

where 𝑝𝑋, 𝑝𝑌, 𝑝𝑍, and 𝑝𝐼 are the “ordinates” on the four axes. Note first
that v𝑂,𝑝𝑋 = 𝜑𝑂,𝑋(𝑝𝑋)v𝑂,𝑋 = 𝜑𝑂,𝑋(𝑝𝑋)eΦ1 , and similarly for the other three
vectors. So:

v𝑂,𝑝 = 𝜑𝑂,𝑋(𝑝𝑋)eΦ1 + 𝜑𝑂,𝑌(𝑝𝑌)eΦ2 + 𝜑𝑂,𝑍(𝑝𝑍)eΦ3 + 𝜑𝑂,𝐼(𝑝𝐼)eΦ4 . (31)

Note second that Φ1(𝑝) is defined to be 𝜑𝑂,𝑋(𝑝𝑋), and Φ2(𝑝) is defined to
be 𝜑𝑂,𝑌(𝑝𝑌), and similarly for 𝑍 and 𝐼. Hence:
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v𝑂,𝑝 = Φ1(𝑝)eΦ1 + Φ2(𝑝)eΦ2 + Φ3(𝑝)eΦ3 + Φ4(𝑝)eΦ4 . (32)

Lemma 32. v𝑝,𝑞 = ∑4
𝑎=1(Φ

𝑎(𝑞) − Φ𝑎(𝑝)) eΦ𝑎 .

Proof. This is verified as follows:

v𝑝,𝑞 = v𝑝,𝑂 + v𝑂,𝑞 = (−v𝑂,𝑝) + v𝑂,𝑞 = v𝑂,𝑞 − v𝑂,𝑝

=
4
∑
𝑎=1

Φ𝑎(𝑞) eΦ𝑎 −
4
∑
𝑎=1

Φ𝑎(𝑝) eΦ𝑎

=
4
∑
𝑎=1

(Φ𝑎(𝑞) − Φ𝑎(𝑝)) eΦ𝑎 ,

(33)

where we used Chasles’s Relation (i.e., v𝑝,𝑞 + v𝑞,𝑟 = v𝑝,𝑟), some properties of
vectors, and then lemma 31 to expand v𝑂,𝑞 and v𝑂,𝑝 into their components in
the Φ-basis.

Note that the vector v𝑝,𝑞 from 𝑝 to 𝑞 is entirely coordinate-independent.
Let us now assume we are considering a full model𝑀 ⊧2 Gal(1, 3), with

𝑀 = (ℙ, 𝐵, ∼,≡∼).

Lemma 33. Any simultaneity hypersurfaceΣ in𝑀 is a three-dimensional affine
space.

Proof. If Σ𝑝 is a simultaneity hypersurface, then, by EG(3)∼, the restriction
(Σ𝑝, 𝐵 ↾Σ𝑝, (≡

∼) ↾Σ𝑝) is a Euclidean three-space isomorphic to (ℝ
3, 𝐵ℝ3, ≡ℝ3)

by theorem 63. Since the reduct (Σ𝑝, 𝐵 ↾Σ𝑝) (i.e., forgetting the congruence
relation) of a Euclidean 3-space is an affine 3-space, Σ𝑝 is an affine three-space
and indeed isomorphic to (ℝ3, 𝐵ℝ3).

Definition 34. We define the horizontal, or simultaneity, vector subspace 𝕍∼
as follows:

𝕍∼ ∶= {v𝑝,𝑞 ∈ 𝕍 ∣ 𝑝 ∼ 𝑞}. (34)

Definition 34 yields:
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Lemma 35. 𝑝 ∼ 𝑞 iff v𝑝,𝑞 ∈ 𝕍∼.

From lemma 33, we obtain:

Lemma 36. 𝕍∼ is a three-dimensional linear subspace of 𝕍.

Definition 37. We define 𝑝 + 𝕍∼ ∶= {𝑞 ∈ ℙ ∣ v𝑝,𝑞 ∈ 𝕍∼}.

Lemma 38. 𝑞 ∈ 𝑝 + 𝕍∼ if and only if 𝑝 ∼ 𝑞.

Proof. This is immediate from definition 37 and lemma 35.

Lemma 39. Σ𝑝 = 𝑝 + 𝕍∼.

Proof. 𝑞 ∈ Σ𝑝, if and only if 𝑝 ∼ 𝑞, if and only if (lemma 38) 𝑞 ∈ 𝑝 + 𝕍∼.

Lemma 40. Let a Galilean frame 𝑂,𝑋, 𝑌, 𝑍, 𝐼 be given, and let e1, e2, e3, e4 be
defined as in definition 26. Then the subset {e1, e2, e3} is a basis for 𝕍∼.

Proof. The proof is that the vectors v𝑂,𝑋, v𝑂,𝑌, and v𝑂,𝑍 each lie in 𝕍∼, and,
moreover, given any point 𝑞 ∈ Σ𝑂, the vector v𝑂,𝑞 is a linear combination of
v𝑂,𝑋, v𝑂,𝑌, and v𝑂,𝑍.

Lemma 41. Given a coordinate system Φ, the set {eΦ1 , eΦ2 , eΦ3 } is a basis for 𝕍∼.

This is a corollary of the previous lemma.

Lemma 42. Let a Galilean frame 𝑂,𝑋, 𝑌, 𝑍, 𝐼 be given, and let e1, e2, e3, e4 be
defined as in definition 26 above. Let v ∈ 𝕍 with v = ∑4

𝑖=1 𝑣
𝑖e𝑖. Then

v ∈ 𝕍∼ ↔ 𝑣4 = 0. (35)

Proof. Let 𝑝 be any point, and consider:

𝑝′ = 𝑝 + v = 𝑝 +
3
∑
𝑖=1

𝑣3e𝑖 +
4
∑
𝑖=1

𝑣4v𝑂,𝐼. (36)

So, v = v𝑝,𝑝′. If v𝑝,𝑝′ ∈ 𝕍∼, we infer that: v𝑝,𝑝′ = 𝛼1e1 + 𝛼2e2 + 𝛼3e3 (for
some coefficients 𝛼𝑖 ∈ ℝ) by lemma 36. Equating coefficients, we conclude
that 𝛼𝑖 = 𝑣𝑖 (for 𝑖 = 1, 2, 3) and 𝑣4 = 0, as claimed. Conversely, if 𝑣4 = 0, we
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infer: v𝑝,𝑝′ = ∑3
𝑖=1 𝑣

𝑖e𝑖 +∑4
𝑖=1 0.v𝑂,𝐼 = ∑3

𝑖=1 𝑣
𝑖e𝑖. And thus, v𝑝,𝑝′ ∈ 𝕍∼. This

implies that v ∈ 𝕍∼.

Definition 43. Let Σ𝑝 and Σ𝑞 be simultaneity hypersurfaces. We say that Σ𝑝
is parallel to Σ𝑞 if and only if either Σ𝑝 = Σ𝑞 or there is no intersection of Σ𝑝
and Σ𝑞. This is written: Σ𝑝 ∥ Σ𝑞.

Lemma 44. All simultaneity hypersurfaces are parallel.

Proof. Let Σ𝑝 and Σ𝑞 be simultaneity hypersurfaces. For a contradiction, sup-
pose Σ𝑝 ∦ Σ𝑞. So, Σ𝑝 ≠ Σ𝑞, and there is an intersection 𝑟 ∈ Σ𝑝 ∩ Σ𝑞. So, 𝑟 ∼ 𝑝
and 𝑟 ∼ 𝑞. Hence, 𝑝 ∼ 𝑞. Hence, Σ𝑝 = Σ𝑞, a contradiction.

Lemma 45 (Translation Invariance of Simultaneity). If 𝑝 ∼ 𝑞, then (𝑝+ v) ∼
(𝑞 + v).

Proof. Suppose 𝑝 ∼ 𝑞. So, we have: v𝑝,𝑞 ∈ 𝕍∼. Consider 𝑝′ = 𝑝 + v and
𝑞′ = 𝑞+v. Letw = v𝑝,𝑞. Since 𝑞 = 𝑝+w, we have 𝑞+v = (𝑝+w)+v, which
implies (using some properties of vector addition and the action) 𝑞′ = 𝑝′ +w.
Hence, w = v𝑝′,𝑞′. So, v𝑝′,𝑞′ = v𝑝,𝑞. Since v𝑝,𝑞 ∈ 𝕍∼, we infer: v𝑝′,𝑞′ ∈ 𝕍∼.
From this, it follows that 𝑝′ ∼ 𝑞′.

Lemma 46. Given a simultaneity hypersurface Σ and time axis 𝑇, there is a
unique intersection point lying in both Σ and 𝑇.

Proof. Let hypersurface Σ and time axis 𝑇 be given. There cannot be two dis-
tinct intersections, say 𝑞 and 𝑞′, for then we should have 𝑞 ∼ 𝑞′, contradicting
the assumption that 𝑇 is a time axis. To establish the existence of at least
one intersection, let us fix a Galilean frame 𝑂,𝑋, 𝑌, 𝑍, 𝐼 with 𝑂, 𝐼 ∈ 𝑇, i.e.,
𝑇 = ℓ(𝑂, 𝐼). For any point 𝑝, we have that there exist unique coefficients 𝑣𝑖
and 𝑣4 such that:

𝑝 = 𝑂 +
3
∑
𝑖=1

𝑣𝑖e𝑖 + 𝑣4v𝑂,𝐼. (37)

Pick any point 𝑝 ∈ Σ (so Σ = Σ𝑝). Next, define the point 𝑞:

𝑞 ∶= 𝑂 + 𝑣4v𝑂,𝐼. (38)

doi: 10.48106/dial.v77.i2.02

https://doi.org/10.48106/dial.v77.i2.02


26 Jeffrey Ketland

Then, we infer v𝑂,𝑞 = 𝑣4v𝑂,𝐼, which implies that 𝑞 ∈ 𝑇. Next, consider v𝑞,𝑝:

v𝑞,𝑝 = v𝑞,𝑂 + v𝑂,𝑝 = −𝑣4v𝑂,𝐼 +
3
∑
𝑖=1

𝑣𝑖e𝑖 + 𝑣4v𝑂,𝐼 =
3
∑
𝑖=1

𝑣𝑖e𝑖. (39)

Since v𝑞,𝑝 = ∑3
𝑖=1 𝑣

𝑖e𝑖 and∑
3
𝑖=1 𝑣

𝑖e𝑖 ∈ 𝕍∼, it follows that 𝑞 ∼ 𝑝. This implies
that 𝑞 ∈ Σ𝑝, and therefore 𝑞 ∈ Σ. The defined point 𝑞 is, therefore, the
required intersection of 𝑇 and Σ.

Definition 47. Let ℓ = ℓ(𝑝, 𝑞) (with 𝑝 ≠ 𝑞) be a line, and let Σ be a simul-
taneity hypersurface. We say that ℓ is parallel to Σ if and only if either ℓ ⊆ Σ
or there is no intersection 𝑟 ∈ 𝑇 ∩ Σ. This is written: ℓ ∥ Σ.

Lemma 48. No time axis is parallel to a simultaneity hypersurface.

Proof. Let 𝑇 = ℓ(𝑝, 𝑞) be a time axis (i.e., 𝑝 ≁ 𝑞). Let Σ be a simultaneity
hypersurface. For a contradiction, suppose 𝑇 ∥ Σ. So, either ℓ(𝑝, 𝑞) ⊆ Σ
or there is no intersection 𝑟 ∈ 𝑇 ∩ Σ. But, by lemma 46, there is a unique
intersection 𝑟 ∈ 𝑇 ∩ Σ. So, we must have: ℓ(𝑝, 𝑞) ⊆ Σ. Then, since 𝑝, 𝑞 ∈
ℓ(𝑝, 𝑞), we have 𝑝, 𝑞 ∈ Σ. Hence, 𝑝 ∼ 𝑞, a contradiction. Therefore, 𝑇 ∦ Σ.

Lemma 49. Let lines ℓ(𝑝, 𝑞) and ℓ(𝑟, 𝑠) be parallel. Then, for some 𝛼 ≠ 0,
v𝑝,𝑞 = 𝛼v𝑟,𝑠.

Proof. This follows from the detailed construction of 𝕍 (based on parallelo-
grams and equipollence), which yields theorem 68.

Lemma 50. Any line parallel to a time axis is a time axis.

Proof. Suppose line ℓ(𝑝, 𝑞) is parallel to a time axis 𝑇 = ℓ(𝑂, 𝐼), with 𝑂 ≁ 𝐼.
Then, by lemma 49, v𝑝,𝑞 = 𝛼v𝑂,𝐼, with 𝛼 ≠ 0. Since 𝑂 ≁ 𝐼, we have v𝑂,𝐼 ∉ 𝕍∼.
In general, for any 𝛼 ≠ 0, v ∈ 𝕍∼ if and only if 𝛼v ∈ 𝕍∼. So, it follows that
v𝑝,𝑞 ∉ 𝕍∼. Hence, 𝑝 ≁ 𝑞. Thus, ℓ(𝑝, 𝑞) is a time axis.
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4.6. Representation

Definition 51. Let 𝑀 = (ℙ, 𝐵, ∼,≡∼) be a 𝜎Gal-structure (i.e., 𝐵 interprets
Bet, ∼ interprets ∼, and ≡∼ interprets ≡∼). Suppose that𝑀 ⊧2 Gal(1, 3). Let
Φ ∶ ℙ → ℝ4 be a function. We say:

𝐵ℝ4 represents 𝐵 wrt Φ iff for all 𝑝, 𝑞, 𝑟 ∈ ℙ: 𝐵(𝑝, 𝑞, 𝑟) ↔ (Φ(𝑝), Φ(𝑞), Φ(𝑟)) ∈ 𝐵ℝ4.
∼ℝ4 represents ∼ wrt Φ iff for all 𝑝, 𝑞 ∈ ℙ: 𝑝 ∼ 𝑞 ↔ Φ(𝑝) ∼ℝ4 Φ(𝑞).
≡∼
ℝ4 represents ≡∼ wrt Φ iff for all 𝑝, 𝑞, 𝑟, 𝑠 ∈ ℙ: 𝑝𝑞 ≡∼ 𝑟𝑠 ↔ Φ(𝑝)Φ(𝑞) ≡∼

ℝ4 Φ(𝑟)Φ(𝑠)

If Φ is a bijection and each of the three above representation conditions
holds, then Φ is an isomorphism from𝑀 to 𝔾(1,3).

In order to prove the Representation Theorem for Gal(1, 3), we need to
establish threemain lemmas. I call these the Chronology Lemma, the Galilean
Frame Translation Invariance Lemma, and the Congruence Lemma.

4.7. The Chronology Lemma

Lemma 52 (Chronology). Let 𝑀 = (ℙ, 𝐵, ∼,≡∼) be a 𝜎Gal-structure, with
𝑀 ⊧2 Gal(1, 3). Let 𝑂,𝑋, 𝑌, 𝑍, 𝐼 be a sim 4-frame in𝑀. Since (ℙ, 𝐵) ⊧2 BG(4),
letΦ ∶ (ℙ, 𝐵) → (ℝ4, 𝐵ℝ4) be an isomorphismmatching𝑂,𝑋, 𝑌, 𝑍, 𝐼. Then∼ℝ4

represents ∼ wrt Φ.

Proof. Since 𝑂,𝑋, 𝑌, 𝑍, 𝐼 is a sim 4-frame, the points 𝑂,𝑋, 𝑌, 𝑍 are simulta-
neous, not coplanar, and 𝑂 ≁ 𝐼. Given that Φ matches 𝑂,𝑋, 𝑌, 𝑍, 𝐼, with
𝑂,𝑋, 𝑌, 𝑍 simultaneous, the associated basis {eΦ1 , eΦ2 , eΦ3 } is a basis for the
simultaneity vector space 𝕍∼, by lemma 41. Since a sim 4-frame is a 4-frame,
{eΦ1 , eΦ2 , eΦ3 , eΦ4 } is a basis for 𝕍. Let points 𝑝, 𝑞 be given. We claim:

𝑝 ∼ 𝑞 ↔ Φ4(𝑝) = Φ4(𝑞). (40)

From lemma 35, we have that 𝑝 ∼ 𝑞 holds if and only if v𝑝,𝑞 ∈ 𝕍∼. Using
lemma 32, we next expand v𝑝,𝑞 in the basis {eΦ𝑎 } determined by Φ:

v𝑝,𝑞 =
4
∑
𝑎=1

(Φ𝑎(𝑞) − Φ𝑎(𝑝))eΦ𝑎 . (41)

From lemma 42, we conclude that v𝑝,𝑞 ∈ 𝕍∼ iff (v𝑝,𝑞)4 = 0. That is, 𝑝 ∼ 𝑞 iff
Φ4(𝑞) − Φ4(𝑝) = 0. And therefore, 𝑝 ∼ 𝑞 iff Φ4(𝑞) = Φ4(𝑝), as claimed.
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4.8. The Galilean Frame Translation Invariance Lemma

Lemma 53 (Galilean Frame Translation Invariance). Let𝑀 = (ℙ, 𝐵, ∼,≡∼)
be a 𝜎Gal-structure, with𝑀 ⊧2 Gal(1, 3). Let 𝑂,𝑋, 𝑌, 𝑍, 𝐼 be a Galilean 4-frame
in 𝑀. Since (ℙ, 𝐵) ⊧2 BG(4), let Φ ∶ (ℙ, 𝐵) → (ℝ4, 𝐵ℝ4) be an isomorphism
matching 𝑂,𝑋, 𝑌, 𝑍, 𝐼. Let v ∈ 𝕍. Let 𝑂′ = 𝑂 + v, 𝑋 ′ = 𝑋 + v, 𝑌 ′ = 𝑌 + v,
𝑍′ = 𝑍 + v, 𝐼′ = 𝐼 + v. Then 𝑂′, 𝑋 ′, 𝑌 ′, 𝑍′, 𝐼′ is a Galilean 4-frame.

That is, leaving the assumptions as stated, when we apply a translation
(given by a vector v) to a Galilean frame, so 𝑂′ = 𝑂 + v, etc., the result is also
a Galilean frame:

𝑂,𝑋, 𝑌, 𝑍, 𝐼 is a Galilean 4-frame iff 𝑂′, 𝑋 ′, 𝑌 ′, 𝑍′ is a Galilean 4-frame.
(42)

Proof. Without loss of generality, we may suppose that v does not lie in the
simultaneity hypersurface Σ𝑂. For if it does, the vector will simply translate
the frame “horizontally,” along within Σ𝑂 and the Euclidean axioms, along
with the fact that the temporal benchmark point 𝐼 also moves “horizontally”
too within the hypersurface Σ𝐼, guarantee that 𝑂′, 𝑋 ′, 𝑌 ′, 𝑍′, 𝐼′ is a Galilean
4-frame.
I will sketch how the proof goes. It is best illustrated by figure 2.
This is the sole part of our analysis appealing to the axiom Gal5, stating the

translation invariance of ≡∼.
The five points 𝑂,𝑋, 𝑌, 𝑍, 𝐼 form a Galilean frame, and thus the four points

𝑂,𝑋, 𝑌, 𝑍 form a Euclidean sim 3-frame. So, in the lower simultaneity hyper-
surface, Σ𝑂, we have a Euclidean sim 3-frame 𝑂,𝑋, 𝑌, 𝑍: the three legs 𝑂𝑋,
𝑂𝑌, and 𝑂𝑍 are perpendicular and of equal length. (The point 𝑍 and the axis
ℓ(𝑂, 𝑍) are suppressed in figure 2.)
Consider the hypersurface Σ𝑂′. By assumption, each of the points

𝑂′, 𝑋 ′, 𝑌 ′, 𝑍′ is obtained by adding the same displacement vector: v = v𝑂,𝑂′:

𝑂′ = 𝑂 + v, 𝑋 ′ = 𝑋 + v,
𝑌 ′ = 𝑌 + v, 𝑍′ = 𝑍 + v.

(43)

Since 𝑂,𝑋, 𝑌, 𝑍 are simultaneous, it follows, using lemma 45, that
𝑂′, 𝑋 ′, 𝑌 ′, 𝑍′ are simultaneous. So, all four points lie in Σ𝑂′.
Next, we use the Translation Invariance axiom Gal5 of Gal(1, 3): ≡∼ is

translation invariant. Since 𝑂,𝑋, 𝑌, 𝑍 form a Euclidean sim 3-frame, we may
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Figure 2: “Transformed Galliean frame” on Σ𝑂′ (axis ℓ(𝑂, 𝑍) and point 𝐼′
suppressed).
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conclude, from the translation invariance of ≡∼, that𝑂′, 𝑋 ′, 𝑌 ′, 𝑍′ is also a Eu-
clidean sim 3-frame. Since v does not lie parallel to Σ𝑂, 𝐼′ is not simultaneous
with 𝑂′, 𝑋 ′, 𝑌 ′, 𝑍′. And, so, 𝑂′, 𝑋 ′, 𝑌 ′, 𝑍′, 𝐼′ is a Galilean 4-frame.

4.9. The Congruence Lemma

Lemma 54 (Congruence). Let 𝑀 = (ℙ, 𝐵, ∼,≡∼) be a 𝜎Gal-structure, with
𝑀 ⊧2 Gal(1, 3). Let 𝑂,𝑋, 𝑌, 𝑍, 𝐼 be a Galilean 4-frame in𝑀. By the Chronology
Lemma (lemma 52), there is an isomorphism Φ ∶ (ℙ, 𝐵, ∼) → (ℝ4, 𝐵ℝ4, ∼ℝ4)
matching 𝑂,𝑋, 𝑌, 𝑍, 𝐼. Then, ≡∼

ℝ4 represents ≡∼ with respect to Φ.

Proof. We are given a structure 𝑀 = (ℙ, 𝐵, ∼,≡∼), a Galilean frame,
𝑂,𝑋, 𝑌, 𝑍, 𝐼 in 𝑀, and an isomorphism Φ ∶ (ℙ, 𝐵, ∼) → (ℝ4, 𝐵ℝ4, ∼ℝ4),
matching 𝑂,𝑋, 𝑌, 𝑍, 𝐼. We shall call Φ the “global isomorphism.” We claim
that ≡∼

ℝ4 represents ≡∼ with respect to Φ; that is, for simultaneous points
𝑝, 𝑞, 𝑟, 𝑠, we have:40

𝑝𝑞 ≡∼ 𝑟𝑠 ↔ Δ3(Φ⃗(𝑝), Φ⃗(𝑞)) = Δ3(Φ⃗(𝑟), Φ⃗(𝑠)). (44)

Consider figure 3:
By hypothesis, the five points 𝑂,𝑋, 𝑌, 𝑍, 𝐼 form a Galilean frame, and thus

the four points 𝑂,𝑋, 𝑌, 𝑍 form a Euclidean sim 3-frame. For points in the
lower simultaneity hypersurface, Σ𝑂, we have, from the Euclidean axiom
group EG(3)∼ in Gal(1, 3) and the Representation Theorem for Euclidean
geometry (theorem 63), the existence of an isomorphism (i.e., coordinate
system on Σ𝑂),

𝜓𝑂 ∶ (Σ𝑂, 𝐵 ↾Σ𝑂, (≡
∼) ↾Σ𝑂) → (ℝ3, 𝐵ℝ3, ≡ℝ3), (45)

that matches this Euclidean sim 3-frame 𝑂,𝑋, 𝑌, 𝑍. So, in the hypersurface
Σ𝑂, a “mini-representation theorem” holds. For any 𝑝, 𝑞, 𝑟, 𝑠 ∈ Σ𝑂,

𝑝𝑞 ≡∼ 𝑟𝑠 ↔ ⃗𝜓𝑂(𝑝) ⃗𝜓𝑂(𝑞) ≡ℝ3 ⃗𝜓𝑂(𝑟), ⃗𝜓𝑂(𝑠). (46)

Let Φ𝑂 be Φ ↾Σ𝑂: the restriction of the global isomorphism Φ to the hy-
persurface Σ𝑂. We are also given that Φ𝑂 also matches 𝑂,𝑋, 𝑌, 𝑍. By the

40 Where Φ⃗(𝑝) is the triple (Φ1(𝑝),Φ2(𝑝),Φ3(𝑝)) ∈ ℝ3, and Δ3 is the metric function onℝ3.
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Figure 3: “Lifted Euclidean frame” on Σᵆ (axis ℓ(𝑂, 𝑍) suppressed).
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uniqueness of coordinate systems that match the same frame (lemma 66), we
conclude:

𝜓𝑂 = Φ𝑂. (47)

Thus, by (46) and (47), Φ𝑂 satisfies:

𝑝𝑞 ≡∼ 𝑟𝑠 ↔ Φ⃗𝑂(𝑝)Φ⃗𝑂(𝑞) ≡ℝ3 Φ⃗𝑂(𝑟), Φ⃗𝑂(𝑠). (48)

We now repeat the same argument for an arbitrary simultaneity surface,
Σᵆ.
Given any point 𝑢, we consider the hypersurface Σᵆ. By lemma 46, the time

axis ℓ(𝑂, 𝐼) intersects Σᵆ at the corresponding “origin,”𝑂ᵆ. By lemma 22, there
are unique lines through 𝑋, 𝑌, and 𝑍, each parallel to ℓ(𝑂,𝑂ᵆ). By lemma 46
again, these intersect Σᵆ at points 𝑋ᵆ, 𝑌 , 𝑍ᵆ. By lemma 44, the hypersurfaces
Σ𝑂 and Σᵆ are parallel; this guarantees that each of the points 𝑂ᵆ, 𝑋ᵆ, 𝑌 , 𝑍ᵆ
is obtained by adding the same displacement vector: v = v𝑂,𝑂𝑢:

𝑂ᵆ = 𝑂 + v, 𝑋ᵆ = 𝑋 + v,
𝑌 = 𝑌 + v, 𝑍ᵆ = 𝑍 + v.

(49)

By the Translation Invariance of Galilean frames, lemma 53, since
𝑂,𝑋, 𝑌, 𝑍, 𝐼 form a Galilean 4-frame, we may conclude that 𝑂ᵆ, 𝑋ᵆ, 𝑌 , 𝑍ᵆ, 𝐼ᵆ
(where 𝐼ᵆ = 𝐼 + v) also form a Galilean 4-frame. And thus, 𝑂ᵆ, 𝑋ᵆ, 𝑌 , 𝑍ᵆ
form a Euclidean sim 3-frame. By the Representation Theorem for Euclidean
geometry, there is an isomorphism 𝜓ᵆ, which matches 𝑂ᵆ, 𝑋ᵆ, 𝑌 , 𝑍ᵆ. By
similar reasoning to the case of Σ𝑂, we define the restriction Φᵆ to be
Φ ↾Σ𝑢—i.e., the restriction of the global isomorphism Φ to the hypersurface
Σᵆ. We can conclude:

𝜓ᵆ = Φᵆ. (50)

Thus, Φᵆ satisfies the following: for any points 𝑝, 𝑞, 𝑟, 𝑠 ∈ Σᵆ,

𝑝𝑞 ≡∼ 𝑟𝑠 ↔ Φ⃗ᵆ(𝑝) Φ⃗ᵆ(𝑞) ≡ℝ3 Φ⃗ᵆ(𝑟) Φ⃗ᵆ(𝑠). (51)

This is equivalent to (44).
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5. Representation Theorem for Gal(1, 3)

Our main theorem is then the following:

Theorem 55 (Representation Theorem for Galilean Spacetime). Let 𝑀 =
(ℙ, 𝐵, ∼,≡∼) be a full 𝜎Gal-structure. Then

𝑀 ⊧2 Gal(1, 3) if and only if there is an isomorphism Φ ∶ 𝑀 → 𝔾(1,3).
(52)

Proof. For the right-to-left direction, suppose there is an isomorphism Φ ∶
𝑀 → 𝔾(1,3). So,𝑀 ≅ 𝔾(1,3). By the Soundness Lemma (lemma 21), 𝔾(1,3) ⊧2
Gal(1, 3). Since isomorphic structures satisfy the same sentences, it follows
that𝑀 ⊧2 Gal(1, 3).
For the converse, let 𝑀 ⊧2 Gal(1, 3). From the Galilean Frame Lemma

(lemma 25), a Galilean frame 𝑂,𝑋, 𝑌, 𝑍, 𝐼 exists. This is a 4-frame. By the
Representation Theorem for BG(4) (theorem 62), we conclude that there is a
global isomorphism:

Φ ∶ ℙ → ℝ4 (53)

such that Φ matches the frame 𝑂,𝑋, 𝑌, 𝑍, 𝐼, and Φ ∶ (ℙ, 𝐵) → (ℝ4, 𝐵ℝ4) is
an isomorphism. So, 𝐵ℝ4 represents the betweenness relation 𝐵 of 𝑀 with
respect to Φ. Recall that the global isomorphism Φmatches a Galilean frame
𝑂,𝑋, 𝑌, 𝑍, 𝐼. Since 𝑂,𝑋, 𝑌, 𝑍, 𝐼 is a Galilean frame, 𝑂,𝑋, 𝑌, 𝑍, 𝐼 is a sim frame.
By the Chronology Lemma (lemma 52), we conclude that the relation ∼ℝ4

represents the simultaneity relation ∼ of 𝑀 with respect to Φ. What is more,
again, since 𝑂,𝑋, 𝑌, 𝑍, 𝐼 is a Galilean frame, we can appeal to the Congruence
Lemma (lemma 54) and conclude that ≡∼

ℝ4 represents the sim-congruence
relation ≡∼ of 𝑀 with respect to Φ.
Assembling this, Φ ∶ 𝑀 → 𝔾(1,3) is an isomorphism, as claimed.

Such isomorphisms Φ ∶ 𝑀 → 𝔾(1,3) are inertial charts on Galilean space-
time. They correspond, one-to-one, with Galilean frames. As we have seen, the
transformation group between these isomorphisms (or, if you wish, between
the Galilean frames) is precisely 𝒢𝑒(1, 3)—the extended Galilean group.
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Appendices

A. Axioms

Definition 56. The non-logical axioms of BG(4) in 𝐿(𝜎Gal,∈) are the following
nine:41

Table 3: Order axioms for betweenness.
B1 Bet-Identity Bet(𝑝, 𝑞, 𝑝) → 𝑝 = 𝑞.
B2 Bet-Transitivity Bet(𝑝, 𝑞, 𝑟) ∧ Bet(𝑞, 𝑟, 𝑠) ∧ 𝑞 ≠ 𝑟 → Bet(𝑝, 𝑞, 𝑠).
B3 Bet-

Connectivity
Bet(𝑝, 𝑞, 𝑟) ∧ Bet(𝑝, 𝑞, 𝑟′) ∧ 𝑝 ≠ 𝑞 →
(Bet(𝑝, 𝑟, 𝑟′) ∨ Bet(𝑝, 𝑟′, 𝑟)).

B4 Bet-Extension ∃𝑝 (Bet(𝑝, 𝑞, 𝑟) ∧ 𝑝 ≠ 𝑞).

B5 Pasch Bet(𝑝, 𝑞, 𝑟) ∧ Bet(𝑠, 𝑢, 𝑞) →
∃𝑥 (Bet(𝑟, 𝑥, 𝑠) ∧ Bet(𝑝, 𝑢, 𝑥)).

B6 Euclid Bet(𝑎, 𝑑, 𝑡) ∧ Bet(𝑏, 𝑑, 𝑐) ∧ 𝑎 ≠ 𝑑 →
∃𝑥∃𝑦 (Bet(𝑎, 𝑏, 𝑥) ∧ Bet(𝑎, 𝑐, 𝑦) ∧ Bet(𝑥, 𝑡, 𝑦)).

B7 Lower
Dimension

There exist five points which are not co3.

B8 Upper
Dimension

Any six points are co4.

B9 Continuity
Axiom

[∃𝑟 (∀𝑝 ∈ X1) (∀𝑞 ∈ X2)Bet(𝑟, 𝑝, 𝑞)] → ∃𝑠 (∀𝑝 ∈
X1) (∀𝑞 ∈ X2)Bet(𝑝, 𝑠, 𝑞).

See Szczerba and Tarski (1979, 159–160) for the first-order two-dimensional
theory GA2 (for “neutral” or “absolute geometry”), which lacks the Euclid
Parallel axiom (which is called (E) in Szczerba and Tarski 1979 and is called

41 These axioms are given originally in Szczerba and Tarski (1965, 1979). See also Goldblatt (1987,
165) for the corresponding first-order theory, which we have called BG0(4). Goldblatt calls this
“the first-order theory of ordered affine fourfolds over real-closed fields.”
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(Euclid) above). Their system includes Desargues’s Theorem. But, for us, this
axiom is no longer required, as it is provable from the remaining axioms in
dimensions above two (Szczerba and Tarski 1979, 190). The above axiom
system is the second-order, four-dimensional theory and contains (E), i.e.,
(Euclid). The relevant representation theorem follows from theorem 5.12 of
Szczerba and Tarski (1979, 185, see also example 6.1). The same theorem is
stated, somewhat indirectly, in Borsuk and Smielew (1960, 196–197). The
representation theorem itself goes back to Veblen (1904).

Definition 57. The non-logical axioms of EG(3) in 𝐿(𝜎Bet,≡,∈) are the fol-
lowing eleven:

Table 4: The axioms of Euclidean Geometry for three dimensions.
E1 Bet-Identity Bet(𝑝, 𝑞, 𝑝) → 𝑝 = 𝑞.
E2 ≡-Identity 𝑝𝑞 ≡ 𝑟𝑟 → 𝑝 = 𝑞.
E3 ≡-Transitivity 𝑝𝑞 ≡ 𝑟𝑠 ∧ 𝑝𝑞 ≡ 𝑡𝑢 → 𝑟𝑠 ≡ 𝑡𝑢.
E4 ≡-Reflexivity 𝑝𝑞 ≡ 𝑞𝑝.
E5 ≡-Extension ∃𝑟 (Bet(𝑝, 𝑞, 𝑟) ∧ 𝑞𝑟 ≡ 𝑠𝑢).

E6 Pasch Bet(𝑝, 𝑞, 𝑟) ∧ Bet(𝑠, 𝑢, 𝑟) →
∃𝑥 (Bet(𝑞, 𝑥, 𝑠) ∧ Bet(𝑢, 𝑥, 𝑝)).

E7 Euclid Bet(𝑎, 𝑑, 𝑡) ∧ Bet(𝑏, 𝑑, 𝑐) ∧ 𝑎 ≠ 𝑑 →
∃𝑥∃𝑦 (Bet(𝑎, 𝑏, 𝑥) ∧ Bet(𝑎, 𝑐, 𝑦) ∧ Bet(𝑥, 𝑡, 𝑦)).

E8 5-Segment (𝑝 ≠ 𝑞 ∧ Bet(𝑝, 𝑞, 𝑟) ∧ Bet(𝑝′, 𝑞′, 𝑟′) ∧ 𝑝𝑞 ≡
𝑝′𝑞′∧𝑞𝑟 ≡ 𝑞′𝑟′∧𝑝𝑠 ≡ 𝑝′𝑠′∧𝑞𝑠 ≡ 𝑞′𝑠′) → 𝑟𝑠 ≡ 𝑟′𝑠′.

E9 Lower
Dimension

There exist four points which are not co2.

E10 Upper
Dimension

Any five points are co3.

E11 Continuity
Axiom

[∃𝑟 (∀𝑝 ∈ X1) (∀𝑞 ∈ X2)Bet(𝑟, 𝑝, 𝑞)] → ∃𝑠 (∀𝑝 ∈
X1) (∀𝑞 ∈ X2)Bet(𝑝, 𝑠, 𝑞).
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The original source of this axiomatization is Tarski (1959) and Tarski and
Givant (1999). See Tarski (1959, 19–20) for a formulation of the first-order
two-dimensional theory, with twelve axioms and one axiom scheme (for
continuity); and Tarski and Givant (1999) for a simplification down to ten
axioms and one axiom scheme (for continuity). The above axiom system is
the second-order, four-dimensional theory (i.e., the single Continuity Axiom
is the second-order one).

B. Representation Theorems

Definition 58 (4-frame). For betweenness geometry, a 4-frame is an ordered
tuple of five points 𝑂,𝑋, 𝑌, 𝑍, 𝐼, which are not co3.42

Definition 59 (Perpendicularity). In Euclidean geometry, perpendicularity
𝑂𝑋 ⟂ 𝑂𝑌 for three distinct points 𝑂,𝑋, 𝑌 is defined as follows: 𝑂𝑋 ⟂ 𝑂𝑌
holds iff 𝑋𝑌 ≡ (−𝑋)𝑌, where (−𝑋) is the unique point 𝑝 on ℓ(𝑂, 𝑋) such that
𝑝 ≠ 𝑋 and 𝑂𝑝 ≡ 𝑂𝑋.

Definition 60 (Euclidean 3-frame). For Euclidean geometry, a Euclidean
3-frame is an ordered quadruple 𝑂,𝑋, 𝑌, 𝑍 of points that are not co2 (i.e., not
coplanar) and such that the segments𝑂𝑋,𝑂𝑌,𝑂𝑍 aremutually perpendicular
and of equal length.

Definition 61 (Matching). Suppose that𝑀 = (ℙ, 𝐵) is a 𝜎Bet-structure with
𝑀 ⊧2 BG(4), and suppose that 𝑂,𝑋, 𝑌, 𝑍, 𝐼 is a 4-frame in 𝑀. Suppose that
Φ ∶ ℙ → ℝ4 is a function. We say that Φmatches 𝑂,𝑋, 𝑌, 𝑍, 𝐼 just if:43

Φ(𝑂) = O, Φ(𝑋) = X, Φ(𝑌) = Y, Φ(𝑍) = Z, Φ(𝐼) = I. (54)

The following two theorems are primarily due to Hilbert (1899), Veblen
(1904), and Tarski (1959):44

42 Burgess refers to such systems of points as “benchmarks”: Burgess and Rosen (1997, 107). For
example, in the two-dimensional case, one may imagine marking three non-collinear points
𝑂,𝑋,𝑌 on a bench. This will be a “2-frame” and will determine a two-dimensional coordinate
system, with𝑂 at the origin, ℓ(𝑂,𝑋) the “𝑥-axis,” and ℓ(𝑂,𝑌) the “𝑦-axis.”

43 A similar definition, mutatis mutandis, can be applied to BG(𝑛) in general and to EG(𝑛) in
general.

44 See also Borsuk and Smielew (1960) and Szczerba and Tarski (1965, 1979).
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O
•

X•

Y
•

Z •

e1

e2

e3

ℓ(O, X)

ℓ(O, Y )

ℓ(O, Z)

Figure 4: Euclidean 3-Frame.

Theorem 62 (Representation Theorem for BG(4)). Let𝑀 = (ℙ, 𝐵) be a 𝜎Bet-
structure. Assume that 𝑀 ⊧2 BG(4). Suppose 𝑂,𝑋, 𝑌, 𝑍, 𝐼 is a 4-frame in 𝑀.
Then there exists a bijection Φ ∶ ℙ → ℝ4 such that:

(a) Φmatches 𝑂,𝑋, 𝑌, 𝑍, 𝐼.
(b) For all 𝑝, 𝑞, 𝑟 ∈ ℙ: (𝑝, 𝑞, 𝑟) ∈ 𝐵 ↔ 𝐵ℝ4(Φ(𝑝), Φ(𝑞), Φ(𝑟)).

Proof. I give a brief sketch. Given a 4-frame 𝑂,𝑋, 𝑌, 𝑍, 𝐼 in𝑀, we first define
four lines ℓ(𝑂, 𝑋), ℓ(𝑂, 𝑌), ℓ(𝑂, 𝑍), and ℓ(𝑂, 𝐼): these are the “𝑥-axis,” “𝑦-axis,”
“𝑧-axis,” and “𝑡-axis” of the 4-frame. One can define (as in Hilbert 1899)
geometrical operations +, ×, and a linear order ≤ on each axis (relative to
the two fixed parameters that determined that axis). These definitions are
explained very clearly in Bennett (1995): for + at p. 48 and for × at p. 62.
Also, see Goldblatt (1987, 23–27). The definition of ≤ is given in Tarski (1959,
proof of theorem 1). Then, using the betweenness axioms, one shows that, on
each axis, ℓ(𝑂, 𝑋), ℓ(𝑂, 𝑌), ℓ(𝑂, 𝑍), and ℓ(𝑂, 𝐼), these definitions specify an
ordered field. For details (ignoring the order aspect), see Bennett (1995, 48–72,
especially theorem 1, p. 72). What is more, the Continuity Axiom guarantees
that this ordered field is a complete ordered field. Up to isomorphism, there is
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exactly one complete ordered field, and this is also rigid. Consequently, there
is a (unique) isomorphism 𝜑𝑂,𝑋 ∶ ℓ(𝑂, 𝑋) → ℝ (and similarly on each axis):

O

•
X

•
p

• ℓ(O, X)

0
•

1
•

φO,X(p)
• R

φO,X φO,X φO,X

Figure 5: Isomorphism from ℓ(𝑂, 𝑋) to ℝ.

Given any point 𝑝, one then constructs four “ordinates” 𝑝𝑋, 𝑝𝑌, 𝑝𝑍, 𝑝𝐼 on
the four axes ℓ(𝑂, 𝑋), ℓ(𝑂, 𝑌), ℓ(𝑂, 𝑍), ℓ(𝑂, 𝐼) by certain parallel lines to these
axes. Then, one defines the coordinate system Φ as follows. Given any point
𝑝 ∈ ℙ, define:

Φ(𝑝) ∶=
⎛
⎜
⎜
⎝

𝜑𝑂,𝑋(𝑝𝑋)
𝜑𝑂,𝑌(𝑝𝑌)
𝜑𝑂,𝑍(𝑝𝑍)
𝜑𝑂,𝐼(𝑝𝐼)

⎞
⎟
⎟
⎠

. (55)

It is clear thatΦmatches𝑂,𝑋, 𝑌, 𝑍, 𝐼. Finally, one shows thatΦ is a bijection
and that it satisfies the required isomorphism condition. Namely, for 𝑝, 𝑞, 𝑟 ∈
ℙ: 𝐵(𝑝, 𝑞, 𝑟) iff 𝐵ℝ4(Φ(𝑝), Φ(𝑞), Φ(𝑟)).

Theorem 63 (Representation Theorem for EG(3)). Let 𝑀 = (ℙ, 𝐵, ≡) be a
𝜎Bet,≡-structure. Assume that𝑀 ⊧2 EG(3). Suppose 𝑂,𝑋, 𝑌, 𝑍 is a Euclidean
3-frame in𝑀. Then there exists a bijection Φ ∶ ℙ → ℝ3 such that:

(a) Φmatches 𝑂,𝑋, 𝑌, 𝑍.
(b) For all 𝑝, 𝑞, 𝑟 ∈ ℙ: (𝑝, 𝑞, 𝑟) ∈ 𝐵 ↔ 𝐵ℝ3(Φ(𝑝), Φ(𝑞), Φ(𝑟)).
(c) For all 𝑝, 𝑞, 𝑟, 𝑠 ∈ ℙ: 𝑝𝑞 ≡ 𝑟𝑠 ↔ Φ(𝑝)Φ(𝑞) ≡ℝ3 Φ(𝑟)Φ(𝑠).

Roughly, this corresponds to theorem 1 of Tarski (1959), and a sketch
of the proof is given there. The difference is that Tarski considers the two-
dimensional first-order theory, whose axioms are what we’ve called EG0(2),
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with the first-order continuity axiom scheme. The Representation Theorem in
Tarski (1959) asserts that, given a model𝑀 ⊧ EG0(2) and a Euclidean frame,
there is a real-closed field 𝐹 such that the conditions (a), (b), (c) hold, with
ℝ replaced by that field and “3” replaced by “2.” When we strengthen to the
second-order Continuity axiom, it follows that this field is in fact ℝ.

C. Automorphisms and Coordinate Systems

Theorem 64. The automorphism (symmetry) groups of the structures defined
in definitions 1 and 4 are characterized in table 5.

Table 5: The automorphism groups of standard Euclideanmetric space, where
ℎ ∶ ℝ𝑛 → ℝ𝑛.

Aut. Group Condition

ℎ ∈ Aut(𝔹𝔾𝑛) (∃𝐴 ∈ 𝐺𝐿(𝑛)) (∃d ∈ ℝ𝑛) (∀x ∈ ℝ𝑛) [ℎ(x) = 𝐴x+d]
ℎ ∈ Aut(𝔼𝔾𝑛) (∃𝑅 ∈ 𝑂(𝑛)) (∃𝜆 ∈ ℝ − {0})(∃d ∈ ℝ𝑛) (∀x ∈

ℝ𝑛) [ℎ(x) = 𝜆𝑅x + d]
ℎ ∈ Aut(𝔼𝔾𝑛

metric) (∃𝑅 ∈ 𝑂(𝑛)) (∃d ∈ ℝ𝑛) (∀x ∈ ℝ𝑛) [ℎ(x) = 𝑅x + d]

Proof. I give a brief summary. For the first, the proof relies on the requirement
that straight lines get mapped to straight lines and parallel lines get mapped
to parallel lines. The outcome is that any such mapping ℎmust be an affine
transformation generated by a 𝐺𝐿(𝑛) matrix 𝐴 and a translation d. So, the
automorphism group is what is usually called Aff(𝑛), the affine group in 𝑛
dimensions. For the third, the symmetry group is the isometry group of the
metric space 𝔼𝔾𝑛

metric—thus, what’s usually called the Euclidean group 𝐸(𝑛):
rotations, inversions, reflections, and translations (reflections and inversions
are𝑂(𝑛)matrices with determinant−1). For the second, which is less familiar,
the symmetries include rotations, inversions, reflections, and translations
again, but also include scalings too:

x↦ 𝜆x. (56)

The latter are sometimes called similitudes or dilations (the non-zero factor 𝜆
represents this scaling). Although the metric distance between two points is
not invariant, nonethelessmetric equalities are invariant. Imagine a rubber
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sheet pinned at some central point, say, 𝑂, and imagine “stretching” it uni-
formly and radially from 𝑂 by some factor. The distance between two points
on the sheet is not invariant under the stretching: Δ(x, y) ↦ |𝜆|Δ(x, y), but
equality between distances of points (i.e., congruence) is invariant.

Lemma 65 (Coordinate Transformations). Given two coordinate systems
Φ,Ψ ∶ ℙ → ℝ4, on a full model 𝑀 = (ℙ, 𝐵) of BG(4), they are related as
follows: there is a 𝐺𝐿(4)matrix 𝐴 and a translation d ∈ ℝ4 such that, for any
point 𝑝 ∈ ℙ, we have:

Ψ(𝑝) = 𝐴Φ(𝑝) + d. (57)

This follows from two facts. First, if Φ,Ψ ∶ 𝑀 → (ℝ4, 𝐵ℝ4) are isomor-
phisms, then Ψ ∘ Φ−1 ∈ Aut((ℝ4, 𝐵ℝ4)). Second, we have Aut((ℝ4, 𝐵ℝ4)) =
Aff(4). (This is the result given in theorem 64 for the automorphisms of the
standard coordinate structure (ℝ4, 𝐵ℝ4) for BG(4).)

Lemma 66. Given a 4-frame𝑂,𝑋, 𝑌, 𝑍, 𝐼 and two coordinate systems,Φ,Ψ, on
a model𝑀 of BG(4), both of which match the frame 𝑂,𝑋, 𝑌, 𝑍, 𝐼, we have:

Ψ = Φ. (58)

The proof applies the coordinate transformation equation (57) to the five
points, 𝑂,𝑋, 𝑌, 𝑍, 𝐼, which gives five specific instances. The first of these
implies that d = 0. The remaining four imply that the 𝐺𝐿(4)matrix 𝐴 is the
identity matrix. Similar reasoning applies in any dimension and also to the
Euclidean case.

D. Reals and Vectors

Given a model (ℙ, 𝐵) ⊧2 BG(4), we know, by theorem 62, that it is isomorphic
to the standard coordinate structure (ℝ4, 𝐵ℝ4).
Using abstraction (or, equivalently, a quotient construction), we can ex-

tend (ℙ, 𝐵) with a new sort (or “universe” or carrier set) ℜ (of ratios) and
operations 0, 1, +, ×,≤ to a two-sorted structure (ℙ,ℜ; 𝐵; 0, 1, +, ×,≤) where
the reduct (ℜ; 0, 1, +, ×,≤) is isomorphic to ℝ (as an ordered field).45 Call a

45 I included this appendix, in part, because I had difficulty locating the material elsewhere. One
important textbook, Bennett (1995), where the definitions of addition+ and multiplication× on
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triple 𝑝, 𝑞, 𝑟 of points a configuration just if 𝑝 ≠ 𝑞 and 𝑝, 𝑞, 𝑟 are collinear. This
abstraction proceeds by the equivalence relation on configurations (𝑝, 𝑞, 𝑟) of
proportionateness. In geometrical terms, there are three basic cases of propor-
tionateness:46

Case 1
Configurations are parallel
Adjoining lines cointersect

Case 2
Configurations may be parallel or not parallel

Adjoining lines parallel Case 3
Configurations intersect at p = a

Adjoining lines parallel

a

•

b

•

c

•

p

•
q

•
r

•

a

•
b

•
c

•

p

•
q

•
r

•

•

p

•
q

•
r

•
a

•

b •

c •

Figure 6: Proportionate Configurations

A real, or ratio, is then an equivalence class [(𝑝, 𝑞, 𝑟)] with respect to pro-
portionateness, and ℜ is the set of these equivalence classes. One may define
a zero 0 as [(𝑝, 𝑞, 𝑝)] and a unit 1 as [(𝑝, 𝑞, 𝑞)]. One defines field operations
+, ×, ≤ in terms of the corresponding operations on a fixed line (see Bennett
1995). One readily checks that the result is that ℜ, with these operations, is
a complete ordered field (and can then be identified with ℝ). Although we
described this model theoretically, this construction can be “internalized”
within BG(4) by adding suitable abstraction axioms (a “definition by abstrac-
tion”) for a new sort, with variables 𝜉𝑖 and a 3-place function symbol 𝜉(𝑝, 𝑞, 𝑟),
and then explicitly defining 0, 1, +, ×, and ≤ on these new objects, and then
proving that the resulting abstracta, i.e., the 𝜉(𝑝, 𝑞, 𝑟) for any configuration
𝑝, 𝑞, 𝑟, satisfy the second-order axioms for a complete ordered field.47

a line ℓ(𝑝, 𝑞), and the proof that these induce a division ring (given Desargues’ Theorem) or a
field (given Pappus’s Theorem), are explained very clearly, is out of print. Also, because I need,
in the main part of the article, to refer to a couple of the summary theorems at the end of this
appendix.

46 Burgess and Rosen (1997, 110) list two basic cases, our Case 1 and Case 3. In a sense, Case 3 is a
limiting case of Case 2 by “sliding” the configuration 𝑎𝑏𝑐 parallel to the three parallel lines until
𝑎 now coincides with 𝑝.

47 The details are given in Burgess (1984).What we’ve called “configurations,” Burgess calls “suitable
configurations.” For the simple case of “extension by abstraction,” with a formula 𝜑(𝑥, 𝑦) that
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Wemay further extend, with a new universe 𝕍 (of displacements, or vec-
tors) and operations 0, +, ⋅, to a three-sorted structure (ℙ,ℜ, 𝕍; 𝐵, 0, 1, +, ×,≤
; 0, +, ⋅), where the reduct (𝕍,ℜ; 0, 1, +, ×; 0, +, ⋅) is isomorphic to ℝ4 (as a
vector space).48 This abstraction proceeds by the equivalence relation on or-
dered pairs (𝑝, 𝑞) of equipollence: (𝑝, 𝑞) is equipollent to (𝑟, 𝑠) just if 𝑝, 𝑞, 𝑠, 𝑟
is a parallelogram:

p

•

q

•

r

•

s

•

vp,q vr,s

Figure 7: Equipollence.

A displacement, or vector, is then an equivalence class [(𝑝, 𝑞)] with respect
to equipollence, and 𝕍 is the set of these equivalence classes. An equivalence
class [(𝑝, 𝑞)] is written v𝑝,𝑞. One may define the zero vector 0 as v𝑝,𝑝. One
defines vector addition + so that v𝑝,𝑞 + v𝑞,𝑟 = v𝑝,𝑟 holds (usually called
Chasles’s Relation). One may define the scalar multiplication ⋅ so that, when
𝑝 ≠ 𝑞, 𝛼 ⋅ v𝑝,𝑞 = v𝑝,𝑟 just if 𝛼 = [(𝑝, 𝑞, 𝑟)]; and, otherwise, 𝛼 ⋅ 0 = 0. One
checks that the vector space axioms are true and that 𝕍 is 4-dimensional.
Finally, by an explicit definition of an action+ ∶ ℙ×𝕍 → ℙ, we can further

extend to (ℙ,ℜ, 𝕍; 𝐵; 0, 1, +, ×,≤; 0, +, ⋅; +) such that (ℙ, 𝕍, +) is isomorphic

can be shown to be an equivalence relation in the basic theory 𝑇, an extension of 𝑇 by abstraction
is obtained by abstraction axioms (i): 𝜉(𝑥) = 𝜉(𝑦) iff 𝜑(𝑥, 𝑦); and (ii): ∀𝜉∃𝑥 (𝜉 = 𝜉(𝑥)),
where 𝜉 is a new variable sort, and 𝜉(𝑥) is a function symbol (which Burgess writes as “[𝑥]”). See
Burgess (1984, 381). Burgess shows (theorem 1.3) that this (indeed any) “extension by abstraction”
is a conservative extension of the original theory 𝑇 and may be interpreted into the original
theory. For the geometrical case, the abstraction axioms are (i): 𝜉(𝑝, 𝑞, 𝑟) = 𝜉(𝑝′, 𝑞′, 𝑟′) iff the
configurations 𝑝, 𝑞, 𝑟 and 𝑝′, 𝑞′, 𝑟′ are proportionate; and (ii): ∀𝜉∃𝑝, 𝑞, 𝑟 (𝑝 ≠ 𝑞∧co1(𝑝, 𝑞, 𝑟)∧
𝜉 = 𝜉(𝑝, 𝑞, 𝑟)). See Burgess (1984, 387, axioms (1) and (2)).

48 The two pluses (+) here have been overloaded: the first is the field addition, and the second is
the vector addition.
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to the affine space𝔸4.49 The definition of the action (𝑝, v) ↦ 𝑝+v is: 𝑞 = 𝑝+v
iff v = v𝑝,𝑞. One may then show that + is a free and transitive action of 𝕍 on
ℙ. The affine space obtained in this way (basically, from the vector space ℝ4,
by “forgetting the origin”) is called 𝔸4.
The discussion and constructions above may be summarized in the follow-

ing three theorems (I follow the usual practice of conflating the name of a
structure with the name of its carrier set):

Theorem 67. ℜ is isomorphic to the complete ordered field ℝ.

Theorem 68. 𝕍 is isomorphic to the vector space ℝ4.

Theorem 69. (ℙ, 𝕍, +) is isomorphic to the affine space 𝔸4.

*

Jeffrey Ketland
0000-0002-5128-4387

Institute of Philosophy, University of Warsaw
jeffreyketland@gmail.com

References

Apostol, Tom. 1967. Calculus Volume 1: One Variable Calculus, With an Introduction
to Linear Algebra. New York: Wiley; Sons Ltd.

Arnold, Vladmir I. 1979.Matematicheskie metody klassicheskoǐ mekhaniki. 2nd ed.
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