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In Defense of Relations

Edward N. Zalta

Two recent arguments draw startling and puzzling conclusions about
relations and 2nd-order logic (2OL). The first argument concludes that
2nd-order quantifiers can’t be interpreted as ranging over relations. This
conclusion is puzzling because it calls into question the traditional un-
derstanding of 2OL as a formalism for quantifying over relations. The
second argument, which concludes that unwelcome consequences arise
if relations and relatedness are analyzed rather than taken as primitive,
utilizes premises that imply that 2OL faces the very same consequences.
This is puzzling because relations and predication are taken as primitive
in 2OL, and so the latter should be immune to the problems raised for
the analysis of relations. I consider these two arguments in light of a
precise theory of relations. In particular, I show that object theory (Zalta
1983, 1988), which is an extension of 2OL, provides systematic existence
and identity conditions for relations, properties, and states of affairs that
forestall the two arguments.

1 Setting Up the Problems

I take relations to be a fundamental kind of entity, and in this paper I investi-
gate some of the principles needed to characterize them. Recently, philoso-
phers have raised puzzling questions about converse and non-symmetric
relations and about the states of affairs in which they play a role (Williamson
1985; Dorr 2004). In addressing these and other questions, some philoso-
phers and philosophical logicians have attempted to analyze relations and
the manner in which they relate. Such analyses, which sometimes appeal to
other fundamental notions, raise questions of their own, such as whether or
not there are positions (argument places, slots, or thematic roles) in a rela-
tion (Fine 2000; Gilmore 2013; Dixon 2018; and Orilia 2014, 2019); what it
is for the relata to bear or stand in a relation; and whether there is an order
of application or a manner of completion that connects relations and their
relata.
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2 Edward N. Zalta

In this paper, however, I take the notions of relation and relation application
(i.e., predication) to be so fundamental that they can’t be further analyzed
and so must instead be axiomatized. This starting point is analogous to that
of the mathematics of set theory—the notions of set and set membership are
considered so fundamental that the best we can do is axiomatize them. As
with set theory, an axiomatic theory of relations has to state, at the very least,
conditions under which the entities being axiomatized exist and conditions
under which they are identical. In what follows, I’ll reprise just such a theory.
It was first proposed in 1983 and was couched in a relatively simple extension
of second-order logic (“2OL”). The resulting system gives us the framework
we need to address the most important questions that have been raised about
relations, including some of the questions that arise when relations are ana-
lyzed.
My defense of relations is focused on two recent arguments that draw rather

puzzling conclusions for relations considered as primitive, axiomatized enti-
ties. The first argument appears in a recent paper byMacBride (2022, 1), where
he concludes, by way of a dilemma, that “we cannot interpret second-order
quantifiers as ranging over relations.” MacBride is not claiming that relations
don’t exist or that some other (e.g., ontologically more neutral) interpretation
of 2nd-order quantifiers is to be preferred, but rather that 2nd-order quanti-
fiers can’t be interpreted unproblematically as ranging over relations.1 This
conclusion is startling because it calls into question the traditional under-
standing of 2OL as a formalism for quantifying over relations. Philosophers
and logicians since Russell have supposed that relational statements of natu-
ral language of the form “𝑎 loves 𝑏,” “𝑎 gives 𝑏 to 𝑐,” etc., can be uniformly
rendered in the predicate calculus as statements of the form 𝑅𝑎1…𝑎𝑛, where
𝑅𝑎1…𝑎𝑛 expresses the claim that 𝑎1,… , 𝑎𝑛 exemplify (or stand in or instanti-
ate) 𝑅. For example, in his description of 2OL, Väänänen (2019, sec. 2) notes
that “[t]he intuitive meaning of 𝑋(𝑡1,… , 𝑡𝑛) is that the elements 𝑡1,… , 𝑡𝑛 are
in the relation 𝑋 or are predicated by 𝑋.” So it is puzzling to be informed that
when we existentially generalize on the statement “𝑅𝑎1…𝑎𝑛” to derive the
claim “∃𝐹(𝐹𝑎1…𝑎𝑛),” we can’t regard this latter claim as quantifying over
relations.

1 Thus, I am not objecting to other interpretations of the second-order quantifiers, either in plural
terms (Boolos 1984, 1985), denominalized terms (Rayo and Yablo 2001), or neutral terms (Wright
2007). Rather, I’m confronting an argument that concludes such quantifiers can’t be successfully
interpreted as ranging over relations.
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In Defense of Relations 3

The second argument and puzzling conclusion appear in MacBride (2014).
On the one hand, MacBride argues that relations, predication (relation appli-
cation), and relatedness should be taken as primitive (2014, 1, 2, 15), on the
grounds that any analysis leads to unwelcome consequences. On the other
hand, the unwelcome consequences he describes for the analysis of relations
are already present in 2OL with identity (2OL=), where relations and predica-
tion are primitive. He endorses the primitive nature of relatedness when he
writes:

I will argue that the capacity of a non-symmetric relation 𝑅 to
apply to the objects 𝑎 and 𝑏 it relates so that 𝑎𝑅𝑏 rather than
𝑏𝑅𝑎must be taken as ultimate and irreducible. […] It’s a familiar
thought that we cannot account for the fact that one thing bears a
relation 𝑅 to another by appealing to a further relation relating 𝑅
to them—that way Bradley’s regress beckons. To avoid the regress
we must recognize that a relation is not related to the things it
relates, however language may mislead us to think otherwise. We
simply have to accept as primitive, in the sense that it cannot be
further explained, the fact that one thing bears a relation to an-
other [citations omitted]. But it is not only the fact that one thing
bears a (non-symmetric) relation 𝑅 to another that needs to be
recognized as ultimate and irreducible. How 𝑅 applies—whether
the 𝑎𝑅𝑏 way or the 𝑏𝑅𝑎 way—needs to be taken as primitive too.
(MacBride 2014, 2, italics in original)

While this seems correct, the argument thatMacBride gives for this conclusion
ensnares 2OL=, where relatedness is primitive. His argument revolves around
the following claim (Russell 1903, sec. 218–219):2

(1) Every (binary) non-symmetric relation 𝑅 has a converse 𝑅∗ that is dis-
tinct from 𝑅.

MacBride argues that any analysis of relations and relation application that
endorses (1) gives rise to “unwelcome consequences,” namely (a) amultiplicity
of converse relations3 and (b) “the profusion of states that arise from the

2 Russell actually talked about “asymmetric” relations, but we’ll discuss the differences below,
wherewe formally define non-symmetric relations. I don’t think anything hangs on the difference.

3 For example, ternary non-symmetric relations have 5 converses, and quarternary non-symmetric
relations have 23.
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application of these relations” (2014, 4). Consequence (a) is puzzling because
2OL=, in which relations, predication, and relatedness are primitive, has a
formal representation of (1) as a theorem. So it seems we face a multiplicity
of relations no matter whether we endorse (1) by way of an analysis or by
way of 2OL=. As part of our investigation, we’ll also examine consequence
(b) and MacBride’s conclusion that there is no good analysis of the identity
and distinctness of states of affairs. He says:

What vexes the understanding is […] an analysis of the funda-
mental fact that 𝑎𝑅𝑏 ≠ 𝑏𝑅𝑎 for non-symmetric 𝑅. […] Anyone
who wishes to give an analysis of the fact that 𝑎𝑅𝑏 ≠ 𝑏𝑅𝑎 faces
a dilemma. […] Since neither […] [of the] analyses are satisfac-
tory, this recommends our taking the fact that 𝑎𝑅𝑏 ≠ 𝑏𝑅𝑎 to be
primitive. (MacBride 2014, 8, italics in original)

[The full quote is provided later in the paper.]When we examine this (second)
dilemma, we’ll see that there is an analysis that is immune to the dilemma
and that MacBride doesn’t consider. One can unproblematically analyze the
identity of states of affairs within a theory on which the fact that a state of
affairs obtains is primitive.
My plan is as follows. In section 2, I lay out the first puzzling argument and

conclusion, i.e., the dilemma used to establish that the 2nd-order quantifiers
don’t range over relations. The argument begins by suggesting that if they do,
then pairs of converse predicates either refer to the same relation or they don’t.
Each disjunct leads to a horn of the dilemma. I then spend the remainder
of section 2 showing that the first disjunct fails, so that we need not worry
about the first horn. In section 3, I examine the argument that leads from
the second disjunct to the second horn and narrow our focus to an issue on
which the conclusion rests, namely, a question about the identity of certain
states of affairs. In section 4, I examine the second puzzling argument and
conclusion from MacBride’s (2014) paper and connect the argument there
with the issue on which we focused in section 3. Then in section 5, I review a
theory of relations and states of affairs that MacBride doesn’t consider but
which has consequences for the issues we’ve developed. In section 6 and
section 7, I use the theory in section 5 to develop two alternative analyses of
the issue (about the identity of states of affairs) on which both of MacBride’s
puzzling conclusions rest. I show that these answers undermine the main
lines of argument that MacBride uses to establish his conclusions.

Dialectica vol. 76, n° 2
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From this overview, it should be clear that in sections 2–4, we’ll extend
2OL in known ways that systematize the language that MacBride uses in
his arguments. However, starting in section 5, I’ll appeal to the theory of
abstract objects developed in Zalta (1983, 1988, 1993), which I henceforth
refer to as “object theory” (“OT”).4 OT extends 2nd-order logic in a way that
allows us to state unproblematic identity conditions for relations and states
of affairs. So my goal throughout will be to show that 2OL has been deployed
and extended to formulate a theory of relations, predication, and states of
affairs that forestalls the puzzling conclusions.
Before we begin, however, it is important to review some terminology and

notation. “2OL” refers only to the formal, axiomatic system of second-order
logic under an objectual interpretation (i.e., where the quantifiers range over
domains of entities). My arguments don’t require that we interpret 2OL in
terms of fullmodels (where the domain of properties has to be as large as the
full power set of the domain of individuals); instead, generalmodels (where
the domain of properties is only as large as some proper subset of the power
set of the domain of individuals) suffice. The only requirement is that the
models validate the axioms of 2OL. In what follows, I’ll represent a binary
atomic predication as “𝑅𝑎𝑏” instead of “𝑎𝑅𝑏,” except when we’re discussing
identity, in which case I’ll use “𝑎 = 𝑏” (i.e., infix notation). As noted earlier,
the atomic formulas of 2OL have the form “𝐹𝑛𝑥1…𝑥𝑛” and can be read as “𝑥1,
…, and 𝑥𝑛 exemplify (or instantiate) 𝐹𝑛,” and we’ll often drop the superscript
on 𝐹 indicating arity since this can be inferred.
No explicit notion of order is required here; we only require that “𝑅𝑎𝑏” and

“𝑅𝑏𝑎” say different things; to say 𝑎 and 𝑏 exemplify 𝑅 is not to say 𝑏 and 𝑎
exemplify 𝑅; to say 𝑥, 𝑦, and 𝑧 exemplify 𝐹 is not to say 𝑥, 𝑧, and 𝑦 exemplify
𝐹; and so on (more about this later). In these examples, the predicate can be
replaced by any nominalized relation term of the right arity. Finally, I’ll use
𝐹,𝐺,𝐻,… as 2nd-order variables; Greek letters will be used as metavariables
instead. So when MacBride talks about the 2nd-order quantified sentence
“∃Φ(𝑎Φ𝑏),” I’ll represent this sentence as “∃𝐹(𝐹𝑎𝑏).”
In the next few sections, we shall extend 2OL in various ways, in part to

systematize the language that MacBride uses in his arguments. We’ll start
with 2OL=, in which identity claims of the form “𝐹𝑛 = 𝐺𝑛” (for any 𝑛) are

4 This theory has been applied and developed in a number of more recent publications, including
Linsky and Zalta (1995), Zalta (2006), Nodelman and Zalta (2014), Menzel and Zalta (2014), Zalta
(2020), and elsewhere. These texts contain useful introductions to the theory.
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primitive.5We’ll also treat states of affairs as 0-ary relations, and instead of
using 𝐹0, 𝐺0,… as 0-ary relation variables, we’ll use 𝑝, 𝑞,… . So identity claims
such as “𝑝 = 𝑞,” asserting the identity of states of affairs, are well-formed.
Moreover, we’ll also make use of 𝑛-ary 𝜆-expressions (𝑛 ≥ 0), interpreted
relationally; these are complex terms that denote relations and states of af-
fairs.6 And we’ll let formulas be complex terms that denote states of affairs,
so that when MacBride uses expressions like “𝑎𝑅𝑏 = 𝑏𝑅𝑎” and “𝑎𝑅𝑏 ≠ 𝑏𝑅𝑎”
(2014, 8), we can represent this talk precisely as identity and non-identity
claims about the states of affairs denoted by the formulas flanking the identity
symbol.7When we extend 2OL to OT in section 5, we’ll add a new, primitive
mode of predication and a primitive modal operator. Using OT, we’ll define
the primitive claims of the form “𝐹𝑛 = 𝐺𝑛” (for 𝑛 ≥ 1) and “𝑝 = 𝑞”; thus,
we’ll provide identity conditions for relations and states of affairs. I’ll then be

5 Though logic texts Enderton (2001b) often formulate 2OL instead of 2OL=, Shapiro (1991, 64)
and Väänänen (2019, sec. 2) mention that 2OL=, in which identity is taken as a primitive, is a
simple extension of 2OL.

6 The definitions of the language of 2OL are easily adapted when we let 𝑛 = 0, thereby including
constants and variables ranging over states of affairs or propositions (where these are taken to be0-
ary relations). And there are extensions of 2OL in which 𝑛-ary 𝜆-expressions have been included
as complex names for 𝑛-ary relations (𝑛 ≥ 0). This suggestion appears in Prior (1971, chaps. 3,
43–44), though Prior subsequently questions the ontological implications of 𝜆-expressions (1971,
45). More recently, 𝜆-expressions were adopted in Zalta (1983, chaps. III, IV; 1993, 407–409);
in Menzel (1986, 7, 26; and Menzel 1993, 67–71) they are used in an untyped setting. And see
Alama and Korbmacher (2023, sec. 9.3) for a discussion of the relational 𝜆-calculus.

7 Thus, the language of 2OL= that we’ll need can be specified precisely in terms of a definition, by
simultaneous recursion, of the notions of formula and term:

• Base clause for terms: every simple constant and variable is a term (i.e., individual con-
stants and variables are individual terms, and 𝑛-ary relation constants and variables
(𝑛 ≥ 0) are 𝑛-ary relation terms).

• Base clauses for formulas: (a) for any 𝑛 ≥ 0, whenever 𝜅1,… , 𝜅𝑛 are any individual
terms andΠ𝑛 is any 𝑛-ary relation term,Π𝑛𝜅1…𝜅𝑛 is a formula, and (b) whenever 𝜅
and 𝜅′ are any individual terms, orΠ andΠ′ are any 𝑛-ary relation terms (for some 𝑛),
𝜅 = 𝜅′ andΠ = Π′ are formulas.

• Recursive clause for formulas: if 𝜑 and 𝜓 are any formulas and 𝛼 is any variable, ¬𝜑,
𝜑 → 𝜓, and ∀𝛼𝜑 are formulas.

• Recursive clauses for terms: where 𝜈1,… , 𝜈𝑛 (𝑛 ≥ 0) are distinct individual variables
and 𝜑 is any formula, then [𝜆𝜈1…𝜈𝑛𝜑] is an 𝑛-ary relation term and 𝜑 itself is a 0-ary
relation term.

We define 𝜑 & 𝜓, 𝜑 ∨ 𝜓, 𝜑 ≡ 𝜓, and ∃𝛼𝜑 (𝛼 any variable) in the usual way. Note that by these
definitions, formulas of the form ∃𝑝(𝑝 ≡ 𝜑), where 𝜑 is any formula, are well-formed. Suitably
restricted, this schema will serve as the 0-ary case of the comprehension principle for relations.

Dialectica vol. 76, n° 2



In Defense of Relations 7

in a position to argue that OT thereby offers an analysis of “𝑎𝑅𝑏 = 𝑏𝑅𝑎” or
“𝑎𝑅𝑏 ≠ 𝑏𝑅𝑎” without facing any dilemmas.
It is also important to spend some time explaining how we plan to use

the technical term predicate. First, we shall almost always be discussing the
predicates of 2OL that serve to represent the predicates of natural language
sentences. But the predicates of 2OL are not the same kind of expression as the
predicates of natural language.When speaking of natural language sentences,
it is traditional to distinguish the “subject” of a sentence from the “predicate.”
For example, in the sentence “John is happy,” “John” is the subject and “is
happy” is the predicate; and in the sentence “John loves Mary,” “John” is the
subject and “loves Mary” is the predicate. In the case of the latter sentence,
one could also say that “loves” is the predicate, while “John” and “Mary” are
the subjects (though “Mary” is often called the direct object). Thus, natural
language predicates are not usually thought of as names or as nominalized
expressions, for there is a sense in which these predicates are incomplete
expressions.
But in what follows, we will be representing natural language predicates in

terms of formal expressions that denote relations, and we’ll be calling those
formal expressions “predicates.” Before I give the definition, however, let me
mention that we shall not adopt the definition of predicate that MacBride
introduces in the following passage (citing Dummett 1981, 38–39), in which
he gives examples in terms of the expressions in a formal language:

[W]hat is a second-order predicate? A first-order predicate (say of
the form “𝐹𝜉”) results from the extraction of one or more names
(“𝑎”) from a closed sentence (“𝐹𝑎”) in which it occurs and insert-
ing a variable in the resulting gap. A second-order predicate (say,
of the form “∃𝑥Φ𝑥”) results from the extraction of a first-order
predicate (“𝐹𝜉”) from a closed sentence (“∃𝑥𝐹𝑥”) and inserting a
variable into the resulting gap. (MacBride 2022, 2–3)

In a footnote to this passage, MacBridemakes it clear that open formulas, such
as “𝐿𝑎𝑥,” “¬𝑅𝑥𝑎,” and “𝑃𝑥 → 𝑄𝑦” (in which 𝑥 and 𝑦 are the only variables),
qualify as predicates. But in what follows, I shall distinguish between open
formulas and predicates.
I shall use the term “predicate” to refer to a relation term Π (i.e., a relation

constant, a relation variable, or a 𝜆-expression) that can occur in an atomic
predication. In classical logic, in which atomic predications take the form

doi: 10.48106/dial.v76.i2.07
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Π𝜅1…𝜅𝑛, the expression Π is a predicate. So where “𝐿” might be used to
represent the loves relation, I’ll distinguish between the predicate “𝐿” and
the open formula “𝐿𝑎𝑥.” The open formula is not a predicate and doesn’t
name a property (i.e., unary relation); we can’t directly infer “∃𝐹(𝐹𝑥)” or
“∃𝐹(𝐹𝑎)” from “𝐿𝑎𝑥.” The open formula “𝐿𝑎𝑥” does have truth conditions
and, given an assignment to the variable 𝑥, denotes a state of affairs. By
contrast, when we add 𝜆-expressions a bit later, we regard the complex unary
relation term “[𝜆𝑥 𝐿𝑎𝑥]” as a predicate. We can combine it with “𝑏” to form
the atomic predication “[𝜆𝑥 𝐿𝑎𝑥]𝑏” (“𝑏 exemplifies being an 𝑥 such that 𝑎
and 𝑥 exemplify the loves relation,” or more simply, “𝑏 exemplifies being loved
by 𝑎”).8 And “[𝜆𝑥𝑦 ¬𝐿𝑥𝑦]” is a predicate because we can form the atomic
statement “[𝜆𝑥𝑦 ¬𝐿𝑥𝑦]𝑎𝑏.”
Thus, the predicates of 2OL and 2OL= denote properties and relations.

Variables such as 𝐹, 𝐺, etc. are also predicates since the expressions “𝐹𝑎,”
“𝐺𝑥𝑦,” etc. are well-formed atomic formulas; the variables 𝐹, 𝐺, etc. denote
properties and relations relative to an assignment to the variables. To consider
a more complex example, let “𝐸” denote being even and “𝑃” denote being
prime. Then, when we replace the constant “2” with “𝑥” in the complex
closed sentence “𝐸2& 𝑃2” (“2 exemplifies being even and 2 exemplifies being
prime”), we obtain “𝐸𝑥&𝑃𝑥.” This latter expression isn’t a predicate—it can’t
be predicated of anything since it is a conjunction of two statements. Relative
to any variable assignment, “𝐸𝑥 & 𝑃𝑥” has truth conditions and denotes a
(complex) state of affairs. Semantically, one can define a sense in which an
individual in the domain can satisfy this open formula (namely, Tarski’s sense),
but this is not to say that the open formula can be predicated of that individual
or predicated of the individual term “𝑎.” By contrast, the complex unary
relation term “[𝜆𝑥 𝐸𝑥 & 𝑃𝑥]” can be combined with an individual constant to
form a predication; that is, we can form the predication “[𝜆𝑥𝐸𝑥&𝑃𝑥]2,” which
predicates the property denoted by the 𝜆-expression of an individual. And in
2OL and 2OL=, we can infer “∃𝐹(𝐹2)” from “[𝜆𝑥 𝐸𝑥 & 𝑃𝑥]2.” So whereas we
call “[𝜆𝑥 𝐸𝑥 & 𝑃𝑥]” a predicate, we won’t call “𝐸𝑥 & 𝑃𝑥” a predicate.
Similarly, we shall not say that the open formulas “𝐹𝑎𝑏” and “𝐹𝑎 & 𝑄𝑏”

(where “𝐹” is a free variable and the other letters are constants) are 2nd-order
predicates. These are open formulas that denote states of affairs relative to

8 From 𝐿𝑎𝑥, we may directly infer, by the right-to-left direction of 𝜆-Conversion (see section 2.2
below), that [𝜆𝑦𝐹𝑦𝑥]𝑎 and [𝜆𝑦𝐹𝑎𝑦]𝑥, and from these latter, we can infer ∃𝐹(𝐹𝑎) and ∃𝐹(𝐹𝑥).
But these existential claims are immediate consequences of the atomic exemplification predica-
tions [𝜆𝑦 𝐹𝑦𝑥]𝑎 and [𝜆𝑦 𝐹𝑎𝑦]𝑥, in which [𝜆𝑦 𝐹𝑦𝑥] and [𝜆𝑦 𝐹𝑎𝑦] are predicates.

Dialectica vol. 76, n° 2



In Defense of Relations 9

an assignment to the free variable 𝐹. As such, these expressions are 0-ary
relation terms, i.e., terms that denote states of affairs (relative to any vari-
able assignment). By contrast, the higher-order 𝜆-expressions “[𝜆𝐹 𝐹𝑎𝑏]” and
“[𝜆𝐹 𝐹𝑎 & 𝑄𝑏]” are predicates of 3rd-order logic (3OL); these are expressions
constructed from the open formulas “𝐹𝑎𝑏” and “𝐹𝑎 & 𝑄𝑏.” The expressions
“[𝜆𝐹 𝐹𝑎𝑏]” and “[𝜆𝐹 𝐹𝑎 & 𝑄𝑏]” are part of the language of 3OL because they
denote properties of relations. These predicates can be used to form predica-
tions in 3OL such as “[𝜆𝐹 𝐹𝑎𝑏]𝑅,” i.e., 𝑅 exemplifies the property of being a
relation 𝐹 such that 𝑎 and 𝑏 exemplify 𝐹. We’ll make use of these higher-order
predicates later, at the point in the discussion when they become relevant.9

2 The First Horn

We can now outline and investigateMacBride’s argument about the interpreta-
tion of the 2nd-order quantifiers. It proceeds under the reasonable assumption
that 2nd-order quantification is a straightforward generalization of 1st-order
quantification (MacBride 2022, 2). So let’s suppose that the 1st- and 2nd-order
quantifiers range over (mutually exclusive) domains and that the axioms
and inference rules of the 2nd-order quantifiers mirror those of the 1st-order
quantifiers. MacBride’s argument, to the conclusion that we cannot interpret
2nd-order quantifiers as ranging over relations, goes by way of a dilemma.

9 It might be thought that such higher-order predicates are expressible in 2OL. One might point to
the following passage in Shapiro (1991, 64–65):

Second-order variables, as well as non-logical predicate, relation, and function
names, may be called “higher-order terms,” items that “denote” relations and
functions. By way of analogy, this opens the possibility of relations of relations,
functions on relations, etc. These may be called higher-order non-logical terms. An
example would be a property TWO of properties such that TWO(𝑃) “asserts” that
𝑃 applies to exactly two things. A relevant “definition” would be:

TWO(𝑃) ≡ ∃𝑥∃𝑦[𝑥 ≠ 𝑦 & ∀𝑧(𝑃𝑧 ≡ (𝑧 = 𝑥 ∨ 𝑧 = 𝑦))]

But here Shapiro is talking loosely and signals that he is talking loosely by putting the word
“denote” (and other terms) in quotation marks. The expression “TWO(𝑃)” can be defined in 2OL,
but it can’t be interpreted as a denoting term, or as a term that denotes a property of properties,
since there is no domain of properties of properties in the interpretation of 2OL. “TWO(𝑃)” is
simply an open formula that some properties satisfy and others don’t. Moreover, in 2OL, the
predicate [𝜆𝐹 TWO(𝐹)] isn’t well-formed; the 𝜆 can only bind individual variables. There is no
domain of properties of properties that could provide a denotation for such an expression.
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10 Edward N. Zalta

Let’s call this the Dilemma for Converses. He presents the dilemma as
follows (MacBride 2022, 1–2):

Dilemma for Converses
Either pairs of mutually converse predicates, such as “𝜉 is on top
of 𝜁” and “𝜉 is underneath 𝜁,” refer to the same underlying relation
or they refer to distinct converse relations. If they refer to the same
relation, then we lack the supply of the higher-order predicates
required to interpret second-order quantifiers as ranging over a
domain of relations. […] If, by contrast, mutually converse pred-
icates refer to distinct converse relations, then whilst we can at
least make abstract sense of the higher-order predicates required
to interpret quantifiers as ranging over a domain of relations,
the implausible consequences for the content of lower-order con-
structions render this interpretation of higher-order quantifiers a
deeply implausible semantic hypothesis

We need not state the full argument for each horn of the dilemma now because
it can be shown that, given the reasonable assumption that non-symmetric
relations exist, the condition leading to the first horn of the Dilemma for
Converses doesn’t hold in 2OL=. We spend the remainder of section 2
showing this, i.e., that mutually converse predicates do not refer to the same
relation.
Since MacBride’s argument in the Dilemma for Converses involves

claims about converse relations, let us define:

• 𝐺 is a converse of 𝐹 if and only if, for any objects 𝑥 and 𝑦, 𝑥 and 𝑦
exemplify 𝐺 iff 𝑦 and 𝑥 exemplify 𝐹, i.e.,

(2) ConverseOf (𝐺, 𝐹) ≡df ∀𝑥∀𝑦(𝐺𝑥𝑦 ≡ 𝐹𝑦𝑥)

In addition, the argument in the Dilemma for Converses concerns the
identity and distinctness of converses and so involves statements of the form
“𝑅 = 𝑆” and “𝑅 ≠ 𝑆.” Thus, to see that the condition leading to the first horn
of the Dilemma is false, i.e., to see that it is not the case that mutually converse
predicates refer to the same underlying relation, we only need to show that
there are converses 𝐹 and 𝐺 that aren’t identical:

(3) ∃𝐹∃𝐺(ConverseOf (𝐺, 𝐹) & 𝐺 ≠ 𝐹)

Dialectica vol. 76, n° 2



In Defense of Relations 11

Any predicates that witness this claim will show that not all predicates for
converses denote the same underlying relation.
Though (3) is not a theorem of 2OL=, it is implied by a theorem of 2OL=

under the assumption that there are non-symmetric relations. To see how, let
us first define:

• 𝐹 is non-symmetric if and only if it is not the case that for any objects 𝑥
and 𝑦, if 𝑥 and 𝑦 exemplify 𝐹, then 𝑦 and 𝑥 exemplify 𝐹, i.e.,10

(4) Non-symmetric(𝐹) ≡df ¬∀𝑥∀𝑦(𝐹𝑥𝑦 → 𝐹𝑦𝑥)

Given this definition, the assumption and theorem needed to establish (3)
may be represented as follows:

(5) ∃𝐹(Non-symmetric(𝐹))
(6) ∀𝐹(Non-symmetric(𝐹) → ∃𝐺(ConverseOf (𝐺, 𝐹) & 𝐺 ≠ 𝐹))

As mentioned above, (5) is a reasonable assumption that MacBride adopts in
his paper. So if we can show that (6), i.e., the formal representation of (1), is
a theorem of 2OL=, it then will be a simple matter to show that (3) follows
from (5) and (6).

2.1 The Reasoning

Two facts about 2OL= have to be mentioned before we begin. First, 2OL=
includes the standard two axioms that logic texts use to systematize identity
claims, namely, the reflexivity of identity and the substitutivity of identicals.11

10 This is to be contrasted with:

• 𝐹 is asymmetric if and only if for any objects 𝑥 and 𝑦, if 𝑥 and 𝑦 exemplify 𝐹, then it is not
the case that 𝑦 and 𝑥 exemplify 𝐹, i.e.,
Asymmetric(𝐹) ≡df ∀𝑥∀𝑦(𝐹𝑥𝑦 → ¬𝐹𝑦𝑥)

Russell discusses asymmetric relations in (1903, sec. 218). In what follows, however, we discuss
the more general notion of non-symmetric relations now being defined in the main text.

11 The reflexivity of identity can be expressed by the schema 𝛼 = 𝛼, where 𝛼 is either an individual
variable or an 𝑛-ary relation variable, for some 𝑛. So𝐹 = 𝐹 becomes an instance of the reflexivity
of identity, where 𝐹 is any relation variable of any arity. The substitutivity of identicals can be
expressed by the schema 𝛼 = 𝛽 → (𝜑 → 𝜑′), where 𝛼 and 𝛽 are both individual variables or
both 𝑛-ary relation variables (for some 𝑛) and 𝜑′ is the result of substituting the variable 𝛽 for
one or more occurrences of 𝛼 in 𝜑, provided that 𝛽 is substitutable for 𝛼 in 𝜑 (i.e., doesn’t get
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Second, where 𝑛 ≥ 0, 2OL= includes the following comprehension axiom
schema of 2OL:

ConverseOf (𝐺, 𝐹) ≡df ∀𝑥∀𝑦(𝐺𝑥𝑦 ≡ 𝐹𝑦𝑥) (CP) Comprehension
Principle for Relations ∃𝐹𝑛∀𝑥1…∀𝑥𝑛(𝐹𝑛𝑥1…𝑥𝑛 ≡ 𝜑), provided
𝐹𝑛 doesn’t occur free in 𝜑.

We may read this as: there exists an 𝑛-ary relation 𝐹 such that any objects
𝑥1,… , 𝑥𝑛 exemplify 𝐹 if and only if 𝜑. In the case where 𝑛 = 0 and “𝑝” is
used as a 0-ary variable instead of “𝐹0,” then (??) asserts ∃𝑝(𝑝 ≡ 𝜑), i.e., there
exists a state of affairs 𝑝 such that 𝑝 obtains if and only if 𝜑. Note that we read
“𝑝” as it occurs in “𝑝 ≡ 𝜑” as “𝑝 obtains,” since (a) “𝑝” occurs as a formula
and (b) obtains for states of affairs is the 0-ary case of exemplification. The
0-ary case of (??) will be of service later, but for now we focus on the cases of
(??) where 𝑛 ≥ 1.
Before we show how 2OL= yields (6) as a theorem, a few words about the

role (??) plays in 2OL= are in order. First, it is often thought that 2OL and
2OL= require a large ontology of relations simply in virtue of including (??) as
an axiom. After all, in the unary case, (??) has instances such as the following:

• ∃𝐹∀𝑥(𝐹𝑥 ≡ ¬𝐺𝑥)
(Any given property) 𝐺 has a negation.

• ∃𝐹∀𝑥(𝐹𝑥 ≡ 𝐺𝑥 & 𝐻𝑥)
(Any given properties) 𝐺 and 𝐻 have a conjunction.

• ∃𝐹∀𝑥(𝐹𝑥 ≡ ∃𝑦𝐾𝑦𝑥)
There is a property that objects exemplify whenever a binary relation 𝐾
is projected into its first argument place.

And in the binary case, (??) has instances like the following:

• ∃𝐹∀𝑥∀𝑦(𝐹𝑥𝑦 ≡ 𝐾𝑦𝑥)
(Any given relation) 𝐾 has a converse.

“captured” by a variable-binding operator when substituted). So as instances of the substitutivity
of identicals, we have 𝐹 = 𝐺 → (𝜑 → 𝜑′), where 𝜑′ is the result of substituting the variable𝐺
for one or more occurrences of 𝐹 in 𝜑, provided𝐺 is substitutable for 𝐹 in 𝜑.
From these two principles, one can derive that identity for relations is symmetric and transitive.

For example, to derive symmetry, i.e., 𝐹 = 𝐺 → 𝐺 = 𝐹, assume 𝐹 = 𝐺. Then consider the
instance of the substitution of identicals 𝐹 = 𝐺 → (𝐹 = 𝐹 → 𝐺 = 𝐹). From this instance and
our assumption, it follows that 𝐹 = 𝐹 → 𝐺 = 𝐹. But from this and reflexivity, it follows that
𝐺 = 𝐹. Hence, by conditional proof, 𝐹 = 𝐺 → 𝐺 = 𝐹.
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In Defense of Relations 13

Since these claims hold for any relations 𝐺, 𝐻, and 𝐾, it might seem that (??)
commits one to a large ontology.
But in fact, the smallest models of 2OL and 2OL= require only that the

domain of 𝑛-ary relations contains just two relations, for each 𝑛. In what fol-
lows, we’ll focus on 2OL=, though the same reasoning applies to 2OL. So how
can it be that 2OL= requires only that the domain of 𝑛-ary relations contains
just two relations, for each 𝑛? The answer is: the smallest models of 2OL=
make (??) true by identifying properties and relations with the same extension.
More specifically, in the smallest models of 2OL=, (i) the domain of individ-
uals contains just a single element, say 𝑏; (ii) the domain of unary relations
contains just two properties—one exemplified by 𝑏 and one exemplified by
nothing; (iii) the domain of binary relations contains just two relations—one
that relates 𝑏 to itself and one that is empty; and so on. For example, if we let
𝑃1 be the property that is exemplified by 𝑏 and 𝑃2 be the empty property, then 𝑃2
is the negation of 𝑃1 and vice versa. Moreover, the conjunction of 𝑃1 with itself
is just 𝑃1; the conjunction of 𝑃2 with itself is just 𝑃2; and the conjunction of 𝑃1
with 𝑃2 (and the conjunction of 𝑃2 with 𝑃1) is just 𝑃2, since nothing exemplifies
both 𝑃1 and 𝑃2. And so on for the other unary instances of (??). Now for the
case of binary relations, let 𝑅1 be the relation that relates 𝑏 to itself, and 𝑅2 be
the empty relation. Then 𝑅1 is the negation of 𝑅2, and vice versa. Moreover, 𝑅1
and 𝑅2 both have converses—each has itself as a converse. 𝑅1 is a converse of
itself because 𝑅1𝑏𝑏 ≡ 𝑅1𝑏𝑏, and 𝑅2 is a converse of itself for a similar reason,
though in this second case, the biconditional 𝑅2𝑏𝑏 ≡ 𝑅2𝑏𝑏 is true because
both sides are false. And so on for the other binary instances of (??).
So if we don’t add any distinguished, theoretical properties and relations,

2OL= doesn’t commit us to much at all. But though 2OL= does commit us to
the existence of converse relations, it does not commit us to the existence of
non-symmetric relations. In the smallest models of 2OL=, as we just saw, there
are only two binary relations; we’ve called them 𝑅1 and 𝑅2. Note that both 𝑅1
and 𝑅2 are symmetric; they both satisfy the open formula ∀𝑥∀𝑦(𝐹𝑥𝑦 → 𝐹𝑦𝑥).
𝑅1 satisfies this formula because 𝑏 is the only object that can instantiate the
1st-order quantifiers and 𝑅1𝑏𝑏 → 𝑅1𝑏𝑏 is a theorem of logic; it is an instance
of the tautology 𝜑 → 𝜑 (note that the consequent is true and so the whole
conditional is true). 𝑅2 is symmetric because, again, 𝑏 is the only object that
can instantiate the 1st-order quantifiers and the tautology 𝑅2𝑏𝑏 → 𝑅2𝑏𝑏 is
again a theorem of logic (note that the antecedent is false, and so the whole
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conditional is true). We can consider this same point proof-theoretically: the
claim ∃𝐹(Non-symmetric(𝐹)) is not a theorem of this logic.12
Of course, (6) can still be true even if there are no non-symmetric relations,

by failure of the antecedent. But the key fact is not that (6) is true indepen-
dently of the existence of non-symmetric relations, but that it is derivable
as a theorem. The proof doesn’t depend on the existence of non-symmetric
relations, doesn’t employ any analysis of predication, and doesn’t require
any particular semantic interpretation of the domain over which the relation
variables range. I’ve put the proof in a footnote.13 So the formal representation
of (1), namely (6), is a theorem of 2OL=.
But the combination of (6) with the reasonable assumption (5) yields the

conclusion that there are mutually converse predicates that don’t refer to

12 The claim that there are non-symmetric relations, i.e., ∃𝐹(Non-symmetric(𝐹)), expands to the
following, by definition (4):

∃𝐹¬∀𝑥∀𝑦(𝐹𝑥𝑦 → 𝐹𝑦𝑥)

Clearly, this claim is not an instance of (??) since it has the wrong form. Moreover, we can’t derive
the existence of non-symmetric relations from instances of (??), such as:

∃𝐹∀𝑥∀𝑦(𝐹𝑥𝑦 ≡ Non-symmetric(𝐹))

This is not a well-formed instance of (??) either, but in this case, the problem is that the variable
𝐹 is free in the formula Non-symmetric(𝐹), violating the axiom’s condition. :::

13 Proof. Pick an arbitrary relation 𝑅 and assume 𝑅 is non-symmetric. Then, by definition (4) and
predicate logic, there are objects, say 𝑎 and 𝑏, such that both 𝑅𝑎𝑏 & ¬𝑅𝑏𝑎. Note independently
that (??) implies that every relation has a converse, as follows: if we let 𝜑 be 𝐺𝑦𝑥, where 𝐺 is
a free variable, then ∃𝐹∀𝑥∀𝑦(𝐹𝑥𝑦 ≡ 𝐺𝑦𝑥) is a binary instance of (??). It follows by universal
generalization that:

∀𝐺∃𝐹∀𝑥∀𝑦(𝐹𝑥𝑦 ≡ 𝐺𝑦𝑥)

By instantiating to 𝑅, it follows that ∃𝐹∀𝑥∀𝑦(𝐹𝑥𝑦 ≡ 𝑅𝑦𝑥). Pick an arbitrary relation as a
witness to this claim, say 𝑆, so that we know:

(A) ∀𝑥∀𝑦(𝑆𝑥𝑦 ≡ 𝑅𝑦𝑥)

(A) implies, by definition (2), that ConverseOf (𝑆,𝑅). But we already know 𝑅𝑎𝑏, since it’s the
first conjunct of 𝑅𝑎𝑏 & ¬𝑅𝑏𝑎. Hence, 𝑆𝑏𝑎, by instantiating 𝑏 for 𝑥 and 𝑎 for 𝑦 in (A). Now
for reductio, assume 𝑆 = 𝑅. Then it follows that 𝑅𝑏𝑎, by substitution of identicals. But this
contradicts ¬𝑅𝑏𝑎, which is the second conjunct of 𝑅𝑎𝑏 & ¬𝑅𝑏𝑎. Hence 𝑆 ≠ 𝑅, by reductio.
We’ve therefore established ConverseOf (𝑆,𝑅) & 𝑆 ≠ 𝑅. So by Existential Introduction,
∃𝐺(ConverseOf (𝐺,𝑅)&𝐺 ≠ 𝑅). By conditional proof, then, it follows thatNon-symmetric(𝑅) →
∃𝐺(ConverseOf (𝐺,𝑅)&𝐺 ≠ 𝑅). But since 𝑅was arbitrary, universally generalizing on 𝑅 yields
(6).
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the same underlying relation. For let “𝑅” be a witness to assumption (5),
so that we know Non-symmetric(𝑅). Then, by (6), we obtain the conclusion
∃𝐺(ConverseOf (𝐺, 𝑅) & 𝐺 ≠ 𝑅), which tells us that 𝑅 has a distinct con-
verse. But we’re not quite done; the condition leading to the first horn of the
Dilemma for Converses is about predicates, and to show that it is false,
we need a bit more reasoning and semantic ascent. So let “𝑆” be a witness
to our last result, so that we know ConverseOf (𝑆, 𝑅) & 𝑆 ≠ 𝑅. Then, by se-
mantic ascent, we have established that the predicates “𝑅” and “𝑆” denote
converse relations that are distinct. Thus, the condition leading to the first
horn of the Dilemma for Converses, namely that pairs of mutually con-
verse predicates refer to the same underlying relation, fails in 2OL= under
any interpretation. We therefore need to consider only the second horn.

2.2 Simplifying the Reasoning

Beforewe turn to the secondhorn of MacBride’s DilemmaforConverses in
section 3, it is relevant, and of significant interest, that (1) can be represented,
and its proof developed much more elegantly, if we add 𝜆-expressions to
2OL=. 𝜆-expressions are complex terms that denote relations, and they will
play an important role in what follows. We begin the explanation of how 𝜆-
expressions simplify our definitions and theorems about converses by saying
a few words about the logic that results when we add these expressions.14
Assume, therefore, that we have added complex, 𝑛-ary relation terms of the
form [𝜆𝑥1…𝑥𝑛𝜑] to the definition of our language (𝑛 ≥ 0) given in footnote 7.
When 𝑛 ≥ 1, we read [𝜆𝑥1…𝑥𝑛𝜑] as being objects 𝑥1,… , 𝑥𝑛 such that 𝜑; when
𝑛 = 0, we read [𝜆 𝜑] as that-𝜑. Thus, 𝜆-expressions do not denote functions,
as in the functional 𝜆-calculus, but rather relations, and in the 0-ary case, they
denote states of affairs. A simple predication like “[𝜆𝑥 ¬𝑃𝑥]𝑦” asserts that 𝑦
exemplifies being an object x that fails to exemplify P, and “[𝜆 ¬𝑅𝑎𝑏]” denotes
the state of affairs that a and b don’t exemplify R.
By adding 𝜆-expressions to 2nd-order logic, we can replace (??) by:

𝜆-Conversion (𝜆C)
[𝜆𝑥1…𝑥𝑛 𝜑]𝑥1…𝑥𝑛 ≡ 𝜑

14 In essence, wewill be using the𝜆-calculus under the interpretation inwhich𝜆-expressions denote
relations rather than functions. See again the nice discussion of this in Alama and Korbmacher
(2023, sec. 9.3).
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This asserts: 𝑥1,… , 𝑥𝑛 exemplify being objects 𝑥1,… , 𝑥𝑛 such that 𝜑 if and only
if 𝜑. For example, [𝜆𝑥𝑦 ¬𝐹𝑥𝑦]𝑥𝑦 ≡ ¬𝐹𝑥𝑦 is an instance, and by universal
generalization, it is a theorem of the relational 𝜆-calculus that:

∀𝐹∀𝑥∀𝑦([𝜆𝑥𝑦 ¬𝐹𝑥𝑦]𝑥𝑦 ≡ ¬𝐹𝑥𝑦)

To see how this works, instantiate this theorem to an arbitrary binary re-
lation 𝑅 and then to arbitrary objects 𝑎 and 𝑏. The result is the instance:
[𝜆𝑥𝑦 ¬𝑅𝑥𝑦]𝑎𝑏 ≡ ¬𝑅𝑎𝑏.15
As previously mentioned, (𝜆C) eliminates the need for (??) since the latter

becomes derivable. The proof is left to a footnote.16 This applies even to the
0-ary case of (𝜆C). When 𝑛 = 0, (𝜆C) asserts [𝜆 𝜑] ≡ 𝜑, i.e., that-𝜑 obtains if
and only if 𝜑.17 For example, the formula [𝜆¬𝐿𝑚𝑗] ≡ ¬𝐿𝑚𝑗might be used to
represent the claim: (the state of affairs) that-Mary-doesn’t-love-John obtains if
and only if Mary doesn’t love John. Note that the 0-ary case of (??) immediately
follows from the 0-ary case of (𝜆C), by Existential Introduction.18 Again,
the 0-ary case of (𝜆C) will play a role later, but for now, let’s focus on the cases
where 𝑛 ≥ 1.

15 In what follows, I also assume two other principles of the 𝜆-calculus (understood relationally),
namely 𝜂-Conversion, which asserts [𝜆𝑥1…𝑥𝑛 Π𝑛𝑥1…𝑥𝑛] = Π𝑛, for any 𝑛-ary relation
termΠ, and 𝛼-Conversion, namely, that alphabetically-variant 𝜆-expressions denote the same
relation. 𝜂-Conversion tells us that a 𝜆-expression such as “[𝜆𝑥𝑦𝑅𝑥𝑦],” in which all the
free variables in the atomic exemplification formula “𝑅𝑥𝑦” are bound by the 𝜆, denotes the
same relation that “𝑅” denotes, i.e., the identity “[𝜆𝑥𝑦 𝑅𝑥𝑦] = 𝑅” holds. As an example of
𝛼-Conversion, we have “[𝜆𝑥𝑦 𝑅𝑥𝑦] = [𝜆𝑦𝑧 𝑅𝑦𝑧].”

16 Just universally generalize on 𝑥1,… ,𝑥𝑛 in (𝜆C) to conclude:

∀𝑥1…∀𝑥𝑛([𝜆𝑥1…𝑥𝑛 𝜑]𝑥1…𝑥𝑛 ≡ 𝜑)

Then, we can existentially generalize on the 𝜆-expression (provided 𝐹 doesn’t occur free in 𝜑) so
that we obtain (??):

∃𝐹∀𝑥1…∀𝑥𝑛(𝐹𝑥1…𝑥𝑛 ≡ 𝜑), provided 𝐹 doesn’t occur free in 𝜑

If 𝐹 were free in 𝜑, it would get “captured” by the quantifier ∃𝐹, and the resulting principle
would be invalid, for it would have the contradictory instance ∃𝐹∀𝑥(𝐹𝑥 ≡ ¬𝐹𝑥).

17 See Zalta (2014) for a full discussion of why this reading is justified and shows that the proposi-
tional version of the Tarski T-schema is a tautology.

18 We can existentially generalize on the 0-ary relation term [𝜆𝜑] in [𝜆𝜑] ≡ 𝜑 to obtain: ∃𝑝(𝑝 ≡ 𝜑),
i.e., there is a state of affairs 𝑝 such that 𝑝 obtains if and only if 𝜑. Of course, the usual proviso
applies, namely, that 𝑝 not occur free in 𝜑. If 𝑝 were to occur free in 𝜑, then we could generalize
on [𝜆 𝜑] by introducing some other quantified variable that doesn’t occur free in 𝜑.
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We can use 𝜆-expressions to introduce a well-behaved converse operator
( )∗ on predicates by taking advantage of 𝜆-expressions. Where 𝐹 is a binary
relation, we may define the converse of 𝐹, i.e., 𝐹∗, as being an x and y such
that y and x exemplify F, i.e.,

(7) 𝐹∗ =df [𝜆𝑥𝑦 𝐹𝑦𝑥]

Note how this definition immediately implies that every relation has a con-
verse, where this is expressible as ∀𝐹∃𝐺(𝐺 = 𝐹∗).19 A fortiori, every non-
symmetric relation has a converse. Thus, we can now represent and prove
(1) more elegantly as the claim that for any binary relation 𝐹, if 𝐹 is non-
symmetric, then its converse 𝐹∗ is distinct:20

(8) ∀𝐹(Non-symmetric(𝐹) → 𝐹∗ ≠ 𝐹)

Again, I’ve put the proof in a footnote,21 and I encourage the reader to compare
the proof of (8) in footnote 21 with the proof of (6) in footnote 13 to confirm
how 𝜆-expressions simplify the reasoning. Thus, as soon as we instantiate
the reasonable assumption (5) to an arbitrary predicate, say “𝑅,” to conclude
Non-symmetric(𝑅), we can immediately instantiate the new predicate “𝑅∗”

19 Let 𝑅 be an arbitrary relation. Then, in classical 2OL=, in which every term (including ev-
ery 𝜆-expression) has a denotation, we have, as an instance of the reflexivity of identity, that
[𝜆𝑥𝑦 𝑅𝑦𝑥] = [𝜆𝑥𝑦 𝑅𝑦𝑥]. So by Existential Introduction, ∃𝐺(𝐺 = [𝜆𝑥𝑦 𝑅𝑦𝑥]). And by
definition of 𝑅∗, it then follows that ∃𝐺(𝐺 = 𝑅∗). Since 𝑅 was arbitrary, we have established
∀𝐹∃𝐺(𝐺 = 𝐹∗).

20 Of course, one could more strictly represent (1) as follows:

∀𝐹(Non-symmetric(𝐹) → ∃𝐺(𝐺 = 𝐹∗ &𝐺 ≠ 𝐹))

But the consequent of this quantified conditional, ∃𝐺(𝐺 = 𝐹∗ & 𝐺 ≠ 𝐹), is just equivalent
to the consequent of claim (8) in the text, namely, 𝐹∗ ≠ 𝐹. The proof of both directions of the
equivalence is straightforward. For the left-to-right direction, suppose ∃𝐺(𝐺 = 𝐹∗ &𝐺 ≠ 𝐹).
Let 𝐻 be such a relation, so that we know both 𝐻 = 𝐹∗ and 𝐻 ≠ 𝐹. Then, by substitution
of identicals, 𝐹∗ ≠ 𝐹. For the right-to-left direction, assume 𝐹∗ ≠ 𝐹. Then, by reflexivity of
identity, 𝐹∗ = 𝐹∗ & 𝐹∗ ≠ 𝐹. Hence, by Existential Introduction, ∃𝐺(𝐺 = 𝐹∗ &𝐺 ≠ 𝐹).
Given the equivalence just established, we use the simpler 𝐹∗ ≠ 𝐹 as the consequent when
representing (1) as (8).

21 Proof. Assume Non-symmetric(𝑅), where 𝑅 is arbitrary. Then, ¬∀𝑥∀𝑦(𝑅𝑥𝑦 → 𝑅𝑦𝑥), i.e., for
some objects, say 𝑎 and 𝑏, we know 𝑅𝑎𝑏 & ¬𝑅𝑏𝑎. Now for reductio, assume 𝑅∗ = 𝑅. Then, by
symmetry of identity, 𝑅 = 𝑅∗, and from 𝑅𝑎𝑏, it follows that 𝑅∗𝑎𝑏, by substitution of identicals.
So by definition (7) of 𝑅∗, we know [𝜆𝑥𝑦𝑅𝑦𝑥]𝑎𝑏. But by (𝜆C), this implies 𝑅𝑏𝑎. Contradiction.
Hence, 𝑅∗ ≠ 𝑅. So by conditional proof, Non-symmetric(𝑅) → 𝑅∗ ≠ 𝑅. Since 𝑅 is arbitrary, we
may universally generalize to get (8).
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into (8) and then conclude 𝑅 ≠ 𝑅∗. So by semantic ascent, the condition
leading to the first horn of the Dilemma for Converses is false.
Thus, whenwe add 𝜆-expressions to 2OL=, the concepts and claims simplify

and clarify. I’ll therefore use (8) as the clearer representation of (1) in what
follows. But my analysis will apply to (6) as well. Both (6) and (8) have been
established as formal theorems without any analysis of predication or any
semantic arguments about converses.

3 The Second Horn

MacBride’s Dilemma for Converses concludes that the quantifiers of 2OL
don’t range over relations, and we’ve now seen that the first horn of the
dilemma fails in 2OL= (i.e., the logic needed to systematize talk about the
identity or distinctness of relation converses). The argument in the second
horn was sketched at the beginning of section 2 above. But a fuller sketch of
the argument emerges later in the paper, beginning in the following passage:

But even if pairs of mutually converse relations are admitted, thus
avoiding the difficulties that arose from dispensing with them,
higher-order predicates of the form ‘𝑎Φ𝑏’ are still required for
the intelligibility of quantification into the positions of converse
predicates, i.e., higher-order predicates capable of being true or
false of a relation belonging to the domain independently of how
that relation is specified. […]

[…] [D]o we have an understanding of higher-order predicates of
the form “𝑎Φ𝑏” which will enable us to interpret second-order
quantification as quantification over a domain of relations? I will
argue that we don’t. (2022, 14)

Before we look at the specific way in which MacBride argues for this conclu-
sion, let’s firstmake the language thatMacBride needs to present his argument
a bit more precise.

3.1 Third-Order Language and Logic (3OL)

I shall suppose that MacBride’s language is 3rd-order, since he wants to for-
mulate higher-order predicates capable of being true or false of relations.
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If we use 𝜆-expressions, we can formally represent the higher-order prop-
erty connected with the open formula “𝐹𝑎𝑏” as [𝜆𝐹 𝐹𝑎𝑏]. We read this 𝜆-
expression as: being a relation 𝐹 such that 𝑎 and 𝑏 exemplify 𝐹. So let us take
on board the resources of a 3rd-order language and logic (3OL), including
monadic, higher-order 𝜆-expressions of the form [𝜆𝐹 𝜑] for denoting complex
properties of relations. 3OL lets us quantify over, and denote, properties of
relations such as [𝜆𝐹 ∀𝑥𝐹𝑥𝑥] (“being a relation 𝐹 that is reflexive”) and such
as [𝜆𝐹 ¬∀𝑥∀𝑦(𝐹𝑥𝑦 → 𝐹𝑦𝑥)] (“being a relation that is non-symmetric”), etc.
In 3OL, 𝜆-expressions of the form [𝜆𝐹 𝜑] are governed by the following

schema:

(Monadic) Third – Order 𝜆-Conversion (3𝜆C)
[𝜆𝐹 𝜑]𝐹 ≡ 𝜑

I.e., 𝐹 exemplifies being a relation such that 𝜑 if and only if 𝐹 is such that 𝜑. So
by Universal Generalization, the following is a theorem schema of 3OL:

(9) ∀𝐹([𝜆𝐹 𝜑]𝐹 ≡ 𝜑)

With this formalization in mind, we can return to MacBride’s argument.
MacBride argues that in order for “∃𝐹(𝐹𝑎𝑏)” to be interpreted as quanti-

fying over relations, we have to be able to grasp the higher-order predicate
associated with the expression “𝐹𝑎𝑏” as being true or false of relations inde-
pendently of how such relations are named or picked out. He then proceeds
to consider and reject a number of proposals for so understanding “𝐹𝑎𝑏.”

3.2 The First Argument for the Second Horn

The first proposal that MacBride considers, and rejects, appeals to the
determinate-determinable distinction. Earlier in his paper, he defined “𝐹𝑎𝑏”
as having a determinable significance when it “is true of the referent 𝑅 of a
first-level predicate […] just in case 𝑅 relates [𝑎] to [𝑏] in somemanner or other
but without settling any determinate arrangement for them” (2022, 9). He
now argues that the suggestion, that “𝐹𝑎𝑏” has a determinable significance,
gets the truth conditions wrong for non-symmetric relations. Let us use
sentences numbered in square brackets to reference the numbered sentences
in MacBride’s paper and consider these two sentences:

[1] Alexander is on top of Bucephalus.
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[8] ¬Bucephalus is on top of Alexander.

He says, in connection with these sentences:

If ‘AlexanderΦ Bucephalus’ has purely determinable significance,
then ‘Bucephalus Φ Alexander’ does too, but they will mean the
same. The latter will stand for a property that a relation has if it
relates Bucephalus and Alexander in some manner or other. But
a relation has the property of relating Bucephalus and Alexan-
der in some manner or other iff it has the property of relating
Alexander and Bucephalus in some manner or other—because
the property of relating some things in some manner or other is
order-indifferent. (2022, 15)

He then draws the conclusion that we can’t explain the valid inference from
[1] to [8] given this analysis, for whereas [1] says that on top of has the order-
indifferent property of relating Alexander and Bucephalus in some manner
or other, [8] says that this relation doesn’t have that property.
MacBride quite rightly rejects the suggestion that “𝐹𝑎𝑏” has a determinable

significance, but for the wrong reasons. MacBride rejects the suggestion on
the grounds that it can’t explain the valid inference from [1] to [8], but I think
we can reject the suggestion because, as we’ll see below, (3𝜆C) already shows
that “𝐹𝑎𝑏,” “𝐹𝑏𝑎,” and “¬𝐹𝑏𝑎” have a determinate rather than a determinable
significance. Before we examine this claim in more detail, let me first put one
issue aside, to be revisited later (in the context of the next suggestion), namely,
whether [1] and [8] say what MacBride claims that they say. I don’t think they
do, but we need not develop the issue at this point.
Instead, we can see that “𝐹𝑎𝑏,” “𝐹𝑏𝑎,” and “¬𝐹𝑏𝑎” have a determinate

significance by considering the higher-order predicates of relations that can
be constructed with the help of these formulas. We may represent the higher-
order properties signified as [𝜆𝐹𝐹𝑎𝑏], [𝜆𝐹𝐹𝑏𝑎], and [𝜆𝐹¬𝐹𝑏𝑎]. These higher-
order properties are all well-defined. To see why, let 𝜑 in (9) be, successively,
𝐹𝑎𝑏, 𝐹𝑏𝑎, and ¬𝐹𝑏𝑎, and instantiate the quantifier ∀𝐹 to the relation 𝑅 in
each case. Then all of the following are theorems of 3OL derivable from (3𝜆C):

(10) [𝜆𝐹 𝐹𝑎𝑏]𝑅 ≡ 𝑅𝑎𝑏
(11) [𝜆𝐹 𝐹𝑏𝑎]𝑅 ≡ 𝑅𝑏𝑎
(12) [𝜆𝐹 ¬𝐹𝑏𝑎]𝑅 ≡ ¬𝑅𝑏𝑎
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These are not schemata. (10) says: relation 𝑅 exemplifies being a relation F
such that a and b exemplify F just in case 𝑎 and 𝑏 exemplify 𝑅. (11) says: 𝑅
exemplifies being a relation F such that b and a exemplify F just in case 𝑏 and
𝑎 exemplify 𝑅. And (12) says: 𝑅 exemplifies being a relation F that b and a fail
to exemplify just in case 𝑏 and 𝑎 fail to exemplify 𝑅.
Thus, “Alexander Φ Bucephalus” (“𝐹𝑎𝑏”) and “Bucephalus Φ Alexander”

(“𝐹𝑏𝑎”) have a determinate significance represented, respectively, by the
higher-order properties [𝜆𝐹 𝐹𝑎𝑏] and [𝜆𝐹 𝐹𝑏𝑎]. Moreover, they clearly don’t
mean the same; they aren’t evenmaterially equivalent. [𝜆𝐹𝐹𝑎𝑏] is exemplified
by 𝑅, given the fact that 𝑅𝑎𝑏 and (10), and [𝜆𝐹 𝐹𝑏𝑎] fails to be exemplified
by 𝑅, given the fact that ¬𝑅𝑏𝑎 and (11). So we need not accept the proposal
that “Alexander Φ Bucephalus” has a determinable significance, nor the
premise about what that hypothesis implies for understanding [1] and [8].
The fact is, expressions of the form “𝐹𝑎𝑏” can be interpreted in terms of
determinate higher-order properties, as we have just done, and so (10) gives
us the philosophical means for understanding the open formula “𝐹𝑎𝑏” for an
arbitrary relation 𝑅.

3.3 The Second Argument for the Second Horn

The next proposal that MacBride considers and rejects is the suggestion that
we understand “𝐹𝑎𝑏” in terms of a higher-order property of relations in
which ordinal notions (“first,” “second”) play some role. In particular, the
proposal under consideration is that “𝐹𝑎𝑏” is to be understood in terms of
the higher-order property that a relation has if it applies to 𝑎 first and 𝑏
second. MacBride develops an extended argument (2022, 16–28) against this
proposal by advancing a number of considerations. At the end, he concludes:
“[…] we lack a grasp of the higher-order predicates required to characterize
relations in a higher-order setting, a grasp that is appropriately rooted in
our understanding of atomic statements” (2022, 25). This conclusion is then
supposed to entail that we can’t understand the quantified formula “∃𝐹(𝐹𝑎𝑏)”
as quantifying over relations.
Let’s grant that the entailment holds. Then we can respond to the argument

by showing that we do have a grasp of the higher-order predicates required
to understand quantification over relations. Fortunately, we don’t have to go
through the extended argument in detail because we can demonstrate that
our grasp of these higher-order predicates is embodied by (3𝜆C). Over the
next few paragraphs, I (a) show why (3𝜆C) is the right principle, (b) defuse
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some reasons that might be offered as to why it isn’t, (c) show how (3𝜆C) helps
us to undermine some of the claims MacBride makes during the course of
his argument for the second horn, and (d) narrow our focus to a question
that is, at least in part, driving MacBride’s concern about quantification over
relations.
Clearly, (3𝜆C) is a logical principle, and it states exemplification (i.e., “ap-

plication”) conditions for the higher-order properties denoted by predicates
of the form [𝜆𝐹 𝜑]. So, we do not lack a principled grasp of the higher-order
predicate “[𝜆𝐹 𝐹𝑎𝑏]” that is formulable from the open formula “𝐹𝑎𝑏.” We saw
that (10) is an instance of (3𝜆C) and so offers a principled statement of the
application conditions of the higher-order property [𝜆𝐹 𝐹𝑎𝑏]. Clearly, one
must distinguish the open formula “𝐹𝑎𝑏” from the closed predicate “[𝜆𝐹𝐹𝑎𝑏]”
to even formulate (3𝜆C).
MacBride does seem to recognize that (3𝜆C) forms the basis of a genuine

response to his argument, for he subsequently considers an informal version
of (3𝜆C). He writes:

Might there be an alternative interpretation of higher-order pred-
icates of the form ‘𝑎Φ𝑏’ over which we have more control and
which will facilitate an interpretation of second-order quantifiers
as ranging over a domain of relations? The ordinary language
construction “—bears---to___,” as it figures in

[14] Alexander bears a great resemblance to Philip,

might appear to be a promising candidate for a construction in
which our understanding of a predicate of the form ‘𝑎Φ𝑏’ might
be rooted. Roughly speaking, the idea is that a relation 𝑅 satisfies
the predicate ‘𝑎Φ𝑏’ just in case 𝑎 bears 𝑅 to 𝑏, whereas 𝑅 satisfies
‘𝑏Φ𝑎’ just in case 𝑏 bears 𝑅 to 𝑎. (2022, 22–23)

MacBride then argues against this idea (2022, 23–24). But I will not examine
the details of this particular argument, for it appears to challenge the intel-
ligibility of a well-known logical principle, namely 𝜆-Conversion (𝜆C), in
its higher-order guise as (3𝜆C). I take both principles to be perfectly intel-
ligible; they axiomatize complex predicates of the form [𝜆𝛼 𝜑] by precisely
identifying their exemplification (or application) conditions. To my mind, the
discussion in (2022, 23–24) doesn’t clearly separate the logic from the way
natural language is to be represented in that logic.
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Note that one can’t reject (3𝜆C) on the grounds that it is trivial. One might
argue that (3𝜆C) trivially recasts the open formula as a higher-order predicate
and so doesn’t help us understand “𝐹𝑎𝑏” or the higher-order property in
question. But neither (𝜆C) in 2OL nor (3𝜆C) in 3OL are trivial. (𝜆C) in 2OL
is a significant principle that is an integral part of the 𝜆-calculus of relations
and thus one of the key axioms for axiomatizing relations (see Zalta 1983, 69;
1993, 406; Menzel 1986, 38; and Menzel 1993, 84). It is stronger than (??) (it
implies (??), as we’ve seen, but (??) doesn’t imply it), and it is not plausible
to suggest that (??) is a trivial principle. (3𝜆C) has a similar significance in
3OL.22
By systematizing the distinction between an open formula such as “𝐹𝑎𝑏”

and the higher-order predicate “[𝜆𝐹 𝐹𝑎𝑏],” it becomes clear that (3𝜆C) may
even be an assumption of MacBride’s paper that addresses the concern he
raises, since the right-to-left direction of (3𝜆C) tells us that if a relation 𝑅
satisfies the open formula “𝐹𝑎𝑏,” then 𝑅 exemplifies the higher-order property
[𝜆𝐹 𝐹𝑎𝑏]. And since (3𝜆C) is a biconditional that implies the converse of
this last claim, we forestall MacBride’s conclusion that we lack a principled
understanding of the application conditions of “𝐹𝑎𝑏.”23

22 One referee for this journal suggested that MacBride would say:

Schematic principles do not address these worries about relations […] precisely
because these principles are schematic, i.e., because they contain schematic letters
which show what happens when a schematic letter is replaced with a predicate,
in this case 𝑅. This means that schematic principles only speak to cases where
relations are picked out by a predicate, but MacBride’s point is that to grasp
“∃Φ(𝑎Φ𝑏)” as incorporating quantification, we need to grasp “𝑎Φ𝑏” as being
true or false of a relation in the domain even if no predicate can pick it out.

But this doesn’t undermine (3𝜆C) as a principle that yields an intelligible understanding of
“𝐹𝑎𝑏.” The instances of (3𝜆C) don’t involve schematic letters. For example, “[𝜆𝐹𝐹𝑎𝑏]𝐹 ≡ 𝐹𝑎𝑏”
directly governs the open formula “𝐹𝑎𝑏,” with the free variable𝐹. No 1st-order predicate constant
appears in this instance, and so no 1st-order relation has been specified by this instance. The two
free occurrences of “𝐹” in this instance refer to an arbitrary relation (i.e., whatever is assigned to
the free variable “𝐹”), independent of how that relation is specified (“𝐹” is a variable, after all).
Any relation in the domain could be assigned as a value for “𝐹.” Moreover, as we saw earlier, the
universally quantified formula (9), i.e., ∀𝐹([𝜆𝐹 𝐹𝑎𝑏]𝐹 ≡ 𝐹𝑎𝑏), is an immediate consequent
of (3𝜆C). It quantifies over every entity in the domain of the quantifier “∀𝐹,” independently of
how those entities are specified. So (3𝜆C) is just the right principle to explain the higher-order
property that MacBride says might be in play in our understanding of the open formula “𝐹𝑎𝑏.”

23 There is another way to forestall MacBride’s conclusion without appealing to 3OL, namely by
developing a precise semantics for the (open) formulas of 2OL that is grounded in a theory of
relations and states of affairs. For example, the language in Zalta (1983) provides truth conditions,
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So if (3𝜆C) gives a principled account of the significance of open formu-
las and the higher-order predicates we can build with such formulas, what
then is really driving the concerns that MacBride has about quantifying over
relations? To understand the root of the concerns, we have to consider one
of the specific arguments that MacBride presents. He spends all of section 6
considering the consequences of supposing that relations hold between the
objects they relate in an order. The underlying root of his concerns emerges
when we consider the “untoward consequences” that allegedly result if we
were to understand “𝐹𝑎𝑏” in terms of a higher-order property that a relation
has if it applies to 𝑎 first and 𝑏 second (2022, 17).
Now in the present paper, we’re not committed to reading the formula

“𝐹𝑎𝑏” as “𝐹 applies to 𝑎 first and 𝑏 second.” The notion of applying to … in an
order isn’t a primitive of our logic; of course, one is tempted to say it is the
position or place in the relation that 𝑎 and 𝑏 have to occupy rather than the
order of application. But our logic isn’t even committed to that much; it isn’t
committed to the existence of positions or places in a relation as entities (see
Fine 2000, 16, for a defense of anti-positionalism). Our reading of “𝐹𝑎𝑏” as
“𝑎 and 𝑏 exemplify 𝐹” doesn’t explicitly say that 𝑎 occupies the first position
(or place) of 𝐹 and 𝑏 the second.24 Similarly, when we read the predicate
“[𝜆𝐹 𝐹𝑎𝑏]” as “being an 𝐹 such that 𝑎 and 𝑏 exemplify 𝐹,” this doesn’t require
us to say further that 𝐹 is such that 𝑎 occupies its first position (or place)
and 𝑏 its second. But let’s grant, for the sake of argument, that the higher-
order predicate involves ordinal notions in the way MacBride suggests and

relative to an assignment to the variables, for the open formula “𝐹𝑎𝑏.” These are stated in terms of
the relation that serves as the denotation of “𝐹” relative to a variable assignment (the denotation
of “𝐹” relative to a variable assignment𝑓 is just the entity assigned to “𝐹” by𝑓). This semantics is
grounded in the theory of relations that is expressible in the extended 2OL formalism developed
in Zalta (1983). We’ll discuss this theory later in the paper.

24 Are the ordinal concepts first, second, etc. assumed by the primitive notion of a relation? This is
by no means clear. The numerals that serve as subscripts on “𝑥1,”…,“𝑥𝑛” provide a way to have
distinct variables; we could have used distinct letters instead. Moreover, the numeral “𝑛,” which
serves as a superscript in “𝐹𝑛” and as a subscript in “𝑥𝑛” in atomic formulas of the general form
𝐹𝑛𝑥1…𝑥𝑛, is not a variable that can be bound by a quantifier in 2OL. Instead of numerals, we
could have placed a series of ticks on the predicate to indicate arity, so that a well-formed atomic
formula includes as many arguments to the predicate as ticks. So, it looks like neither the ordinal
concepts first, second, etc., nor the concept of number are primitives of the predicate calculus.
Thus, the expressions denoting relations have, at best, only an implicit notion of order that

does little more than preserve the idea that “𝐹𝑎𝑏” says something different from “𝐹𝑏𝑎,” and so
on for relations of greater arity. That is, at a minimum, we require only that “𝑎 and 𝑏 exemplify
𝐹” says something different than “𝑏 and 𝑎 exemplify 𝐹.” That may be the extent to which the
theory of relations assumes ordinal notions.
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read it as “being an 𝐹 such that 𝐹 applies to 𝑎 first and 𝑏 second.” Under this
reading, (3𝜆C) remains true. MacBride then considers symmetric and non-
symmetric relational statements and, in each case, finds reasons to question
the understanding of “𝐹𝑎𝑏” in terms of ordinal notions. For example, with
respect to the symmetric relation differs from, he argues that “Darius differs
from Alexander” and “Alexander differs from Darius” intuitively say the same
thing, but given the understanding of the open formulas “𝐹𝑑𝑎” and “𝐹𝑎𝑑”
that we’re now considering, these formulas say different things. He argues:

Since second-order logic permits existential quantification into
the positions of symmetric predicates, it follows—assuming the
proposed interpretation of higher-order predicates—that atomic
statements in which symmetric predicates occur attribute to sym-
metric relations the property of applying to the things they relate
in an order. But it is far from plausible that they do. Consider, for
example,

[9] Darius differs from Alexander

and

[10] Alexander differs from Darius.

If predicates of the form “𝑎Φ𝑏” mean what they’re proposed to
mean, then [9] says that the relation picked out by “𝜉 differs from
𝜁” applies to Darius first and Alexander second, whereas [10] says
that it applies to Alexander first and Darius second. But, as both
linguists and philosophers have reflected, prima facie statements
like [9] and [10] don’t say different things but are distinguished
solely by the linguistic arrangements of their terms. (2022, 17)

Although MacBride cites a number of authorities for his last claim, he also
mentions that Russell (1903, sec. 94) argued against it and for the view that
statements like [9] and [10] express distinct propositions.
Before I examine this argument, let me return to one issue. I don’t accept

that [9] says what MacBride claims it says. [9] does not say, nor can one derive
in 2OL or 3OL that it says, “the relation picked out by ‘𝜉 differs from 𝜁’ applies
to Darius first and Alexander second,” as MacBride suggests. For one thing,
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[9] doesn’t say anything about predicates picking out, or denoting, relations.
Instead, [9] simply says Darius differs from Alexander (or, when regimented
as 𝑑 ≠ 𝑎, [9] says “𝑑 and 𝑎 exemplify being non-identical”). Of course, when
we regiment [9] as “𝑑 ≠ 𝑎” and use 3OL, we can also instantiate our sentence
(9) in section 3.1 to the non-identity relation ≠ to obtain [𝜆𝐹 𝐹𝑑𝑎]≠ ≡ 𝑑 ≠ 𝑎
and infer from this last fact and the representation of [9] that [𝜆𝐹 𝐹𝑑𝑎]≠,
i.e., that the relation differs from exemplifies the higher-order property of
being a relation Darius and Alexander exemplify. So, in what follows, I’ll treat
MacBride’s reading of [9] not as what [9] says but as what [9] semantically
implies in 3OL. And something similar applies to MacBride’s sentence [10].
Clearly, the crux of MacBride’s argument in the above passage is his view

that [9] and [10] don’t say different things. But surely there is at least a sense of
“says” in which [9] and [10] do say different things. If we ignore the particular
symmetric relation involved and consider a non-symmetric relation, then to
say “John lovesMary” is not to say “Mary loves John.” SoMacBride’s argument
must turn on a notion of “says” in which [9] and [10] say the same thing. For
the purposes of discussion, the notion in question has to be something like
“denote the same state of affairs.” He is convinced that they do, whereas I
think this isn’t at all clear. The point at issue concerns the identity of states of
affairs; if one allows, for example, that necessarily equivalent states of affairs
may be distinct, it is by no means a fact that [9] and [10] say the same thing.25
Indeed, I hope to show in what follows that as long as we have a clear theory
of relations and states of affairs (something that can be developed without
the resources of 3OL), one can both (a) challenge the suggestion that [9] and

25 I don’t think MacBride here is claiming that the state of affairs 𝑑 ≠ 𝑎 is identical to 𝑎 ≠ 𝑑 on the
grounds that they are necessarily equivalent. That is, he does not give the following argument:

Given the necessity of identity and a modal logic with the K and B axioms, it
follows not only that ∀𝑥∀𝑦(𝑥 = 𝑦 → �𝑥 = 𝑦) but also that ∀𝑥∀𝑦(𝑥 ≠ 𝑦 →
�𝑥 ≠ 𝑦). So from [9] (𝑑 ≠ 𝑎) and [10] (𝑎 ≠ 𝑑), it would follow that �𝑑 ≠ 𝑎 and
�𝑎 ≠ 𝑑, respectively. But (�𝜑 &�𝜓) → �(𝜑 ≡ 𝜓), and so it would follow that
�(𝑑 ≠ 𝑎 ≡ 𝑎 ≠ 𝑑). Since necessarily equivalent states of affairs are identical, it
would follow that (𝑑 ≠ 𝑎) = (𝑎 ≠ 𝑑), thereby identifying the two states of affairs
in question. This argument would hold for any symmetric relation like differs
from that holds necessarily whenever it holds.

But MacBride doesn’t argue this way, and even if he were to so argue, we do not suppose, in what
follows, that necessarily equivalent states are identical. There are well-known counterexamples
to the proposal that necessarily equivalent relations, properties, and states of affairs are identical.
In what follows, we take such entities to be hyperintensional, i.e., entities that may be distinct
even if necessarily equivalent.
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[10] denote the same state of affairs and (b) argue that even if we leave the
question open, we can still understand the application conditions of “𝐹𝑎𝑏”
and conclude that “∃𝐹(𝐹𝑎𝑏)” quantifies over relations.26
But beforewe turn to the theory of relations and states of affairs that support

this position, the second puzzling conclusion mentioned at the outset of the
paper, namely the conclusion in MacBride (2014), becomes relevant. For the
argument in that paper also turns, at least in part, on the question of the
identity of states of affairs.

4 The Second Puzzling Conclusion

To state the second puzzling conclusion, which occurs in MacBride (2014),
we have to recall the second of the three degrees of relatedness that MacBride
distinguishes in that paper. He says, where 𝑅∗ signifies the converse of 𝑅,
that “to embrace the second degree is to make the existential assumption that
every non-symmetric relation has a distinct converse (𝑅 ≠ 𝑅∗)” (2014, 3). He
then argues that relatedness in the second degree “spells trouble” and has
“unwelcome consequences,” namely, that it “commits us to a superfluity of
converse relations and states” (2014, 4). Let’s consider these claims in turn,
i.e., by focusing first on the superfluity of relations and then on the superfluity
of states.
Let me begin by suggesting that the superfluity of converse relations is not

the main objection of the two. For recall that the conclusion in MacBride
(2014) is that we should take relations and relation application as primitive.
Since these notions are primitive in 2OL=, the conclusion MacBride draws
in (2014) doesn’t eliminate the multiplicity of relations. For when (1) is rep-
resented as (6), it becomes a theorem of 2OL=, as we saw in section 2.1. So
the multiplicity of converse relations arises even when relations and relation
application are primitive (given the assumption that non-symmetric relations

26 I note another reason for not accepting MacBride’s reading of [9] as “what it says.” If we were to
accept his reading, then “∃𝐹(𝐹𝑎𝑏)” would say that some relation has the higher-order property
that a relation has when it applies to 𝑎 first and 𝑏 second. But “∃𝐹(𝐹𝑎𝑏)” doesn’t say this, not
even semantically, for it says nothing about higher-order properties. The claim that MacBride
attributes to “∃𝐹(𝐹𝑎𝑏)” is representable in 3OL by the formula: ∃𝐺([𝜆𝐹 𝐹𝑎𝑏]𝐺). This does
indeed say, given MacBride’s hypothesis about the ordinal notions involved, that some relation
𝐺 exemplifies the property of being a relation 𝐹 that applies to 𝑎 first and 𝑏 second. But the
semantics of 2OL doesn’t explicitly require quantification over properties of relations when it
assigns truth conditions to “∃𝐹(𝐹𝑎𝑏),” and so one can interpret this claim in 2OL without
invoking properties of relations. Of course, one needs Tarski’s notion of satisfaction instead.
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exist). And this holds not only for binary non-symmetric relations but also
non-symmetric relations of higher arity.27 Though MacBride also suggests
that we can’t name the relations given such a multiplicity, in fact we can
denote them using 𝜆-expressions.28 In any case, MacBride’s argument that
relations and relation application should be taken as primitive doesn’t avoid
the conclusion that there are a multiplicity of converse relations.
So the real problem about the fact that non-symmetric relations have dis-

tinct converses concerns the “profusion” of states of affairs. MacBride re-
hearses this problem by considering on and under, both of which are asym-
metric (and hence non-symmetric if there are objects that stand in those
relations):

27 To see that the generalization of (6) remains a theorem for relations of higher arity, let 𝐹 be any
𝑛-ary relation (𝑛 ≥ 3) and let 𝑖 and 𝑗 be such that 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. Then we may define the
𝑖, 𝑗th-converse of 𝐹, written 𝐹∗

𝑖,𝑗, as follows:

(𝜗) 𝐹∗
𝑖,𝑗 =df [𝜆𝑥1…𝑥𝑖…𝑥𝑗…𝑥𝑛 𝐹𝑥1…𝑥𝑗…𝑥𝑖…𝑥𝑛]

And we can define 𝐹 as non-symmetric with respect to its 𝑖th and 𝑗th places:

(𝜉) Non-symmetric𝑖,𝑗(𝐹) ≡df ¬∀𝑥1…∀𝑥𝑖…∀𝑥𝑗…∀𝑥𝑛(𝐹𝑥1…𝑥𝑖…𝑥𝑗…𝑥𝑛 →
𝐹𝑥1…𝑥𝑗…𝑥𝑖…𝑥𝑛)

Then for any 𝑛-ary relation 𝐹 (𝑛 ≥ 3) and 𝑖, 𝑗 (1 ≤ 𝑖 < 𝑗 ≤ 𝑛), it is provable that:

∀𝐹(Non-symmetric𝑖,𝑗(𝐹) → 𝐹 ≠ 𝐹∗
𝑖,𝑗)

The proof is just a generalization of the one given for (8) and goes as follows: Fix 𝑛, 𝑖, and
𝑗. Assume Non-symmetric𝑖,𝑗(𝐹). Then by (𝜉), there are objects 𝑥1,… ,𝑥𝑖,… ,𝑥𝑗,… ,𝑥𝑛, say
𝑎1,… , 𝑎𝑖,… , 𝑎𝑗,… , 𝑎𝑛, such that 𝐹𝑎1…𝑎𝑖…𝑎𝑗…𝑎𝑛 and ¬𝐹𝑎1…𝑎𝑗…𝑎𝑖…𝑎𝑛. As-
sume, for reductio, that 𝐹 = 𝐹∗

𝑖,𝑗. Then it follows by the substitution of identicals that
𝐹∗
𝑖,𝑗𝑎1…𝑎𝑖…𝑎𝑗…𝑎𝑛. So by definition (𝜗), it follows that:

[𝜆𝑥1…𝑥𝑖…𝑥𝑗…𝑥𝑛 𝐹𝑥1…𝑥𝑗…𝑥𝑖…𝑥𝑛]𝑎1…𝑎𝑖…𝑎𝑗…𝑎𝑛

Hence, by (𝜆C): 𝐹𝑎1…𝑎𝑗…𝑎𝑖…𝑎𝑛. Contradiction.
28 MacBride says, “Each ternary non-symmetric relation has five mutual converses, and we don’t

have names for any of them” (2014, 4). But if 𝑆 is a ternary non-symmetric relation, we can
denote its converses as follows: [𝜆𝑥𝑦𝑧𝑆𝑥𝑧𝑦], [𝜆𝑥𝑦𝑧𝑆𝑦𝑥𝑧], [𝜆𝑥𝑦𝑧𝑆𝑦𝑧𝑥], [𝜆𝑥𝑦𝑧𝑆𝑧𝑥𝑦], and
[𝜆𝑥𝑦𝑧 𝑆𝑧𝑦𝑥]. The first of these can be read as: being objects 𝑥, 𝑦, and 𝑧 such that 𝑥, 𝑧, and
𝑦 exemplify 𝑆; the second as: being objects 𝑥, 𝑦, and 𝑧 such that 𝑦, 𝑥, and 𝑧 exemplify 𝑆; etc.
van Inwagen (2006) would demur, but his argument doesn’t engage (the coherency of) a precise
theory of relations of the kind presented section 5 below.
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It’s one kind of undertaking to put the cat on the mat, something
else to put the mat under the cat, but however we go about it we
end up with the same state. To bring the cat to the forefront of our
audience’s attention we describe this state by saying that the cat
is on the mat; to bring the mat into the conversational foreground
we say that the mat is under the cat. But whether it’s the cat we
mention first, or themat, whatwe succeed in describing is the very
same cat-mat orientation. That’s intuitive but if—as the second
degree describes—a non-symmetric relation and its converse are
distinct, we must be demanding something different from the
world, a different state, when we describe the application of the
above relation to the cat and the mat from when we describe the
application of the below relation to the mat and the cat. (2014, 4)

The worry is that converse relations commit us to the principle that if 𝑅 is
non-symmetric, then for any 𝑥 and 𝑦, the state of affairs 𝑅𝑥𝑦 is distinct from
the state of affairs 𝑅∗𝑦𝑥. We can formally represent the allegedly problematic
principle as follows:

(13) ∀𝐹�(Non-symmetric(𝐹) → ∀𝑥∀𝑦(𝐹𝑥𝑦 ≠ 𝐹∗𝑦𝑥))

This, it is claimed, is counterintuitive, and MacBride cites Fine (2000) in
support of his claim.29 If this is the concern, why not adopt the following
principle instead:

• For any binary relation 𝐹, necessarily, if 𝐹 is non-symmetric, then for
any 𝑥 and 𝑦, the state of affairs x and y exemplify F is identical to the
state of affairs y and x exemplify 𝐹∗, i.e.,

29 In Fine (2000, 3), we find:

What makes this consequence so objectionable, from a metaphysical standpoint,
is a certain view of how relations are implicated in states or facts. Suppose that a
given block 𝑎 is on top of another block 𝑏. Then there is a certain state of affairs
𝑠1, that wemay describe as the state of 𝑎’s being on top of 𝑏. There is also a certain
state of affairs 𝑠2 that may be described as the state of 𝑏’s being beneath 𝑎. Yet
surely the states 𝑠1 and 𝑠2 are the same. There is a single state of affairs 𝑠 “out
there” in reality, consisting of the blocks 𝑎 and 𝑏 having the relative positions that
they do; and the different descriptions associated with 𝑠1 and 𝑠2 would merely
appear to provide two different ways at getting at this single state of affairs.
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(14) ∀𝐹�(Non-symmetric(𝐹) → ∀𝑥∀𝑦(𝐹𝑥𝑦 = 𝐹∗𝑦𝑥))

The answer MacBride gives is (2014, 4):

We might attempt to defend the second degree by maintaining
that the application of 𝑅 and 𝑅∗ does not give rise to different
states with respect to the same relata but different decomposi-
tions of the same state. So whilst above and below are distinct, the
relational configuration cat-above-mat is a decomposition of the
same state as the configurationmat-below-cat. But these decom-
positions comprise what are ultimately different constituents—a
non-symmetric relation and its converse are supposed to be dis-
tinct existences. But now we have the difficulty of explaining how
such different decompositions can give rise to a single state.

So, again, the problem being raised is about the identity of states of affairs. In
these cases, MacBride is confident that there is a single state involved.
Note that we’ve now connected up the issue on which MacBride’s (2022)

paper turns with the issue on which his (2014) paper turns, namely, the
identity of states of affairs. What gives rise to this problem is that 2OL and
2OL= don’t have the resources to supply a good definition of the conditions
under which states of affairs are identical, even if we addmodality to the logic.
For neither of the following definitions is a good one:

𝑝 = 𝑞 ≡df 𝑝 ≡ 𝑞

𝑝 = 𝑞 ≡df �(𝑝 ≡ 𝑞)

It is reasonable to suppose that the state of affairs there is a barber who
shaves all and only those who don’t shave themselves (∃𝑥(𝐵𝑥 & ∀𝑦(𝑆𝑥𝑦 ≡
¬𝑆𝑦𝑦))) is distinct from the state of affairs there is a brown and colorless
dog (∃𝑥(𝐷𝑥 & 𝐵𝑥 & ¬𝐶𝑥)), yet these are not just equivalent but necessarily
equivalent (since both are necessarily false).
So whereas both of the above definitions might be used to explain why

𝐹𝑥𝑦 = 𝐹∗𝑦𝑥 (e.g., “they are identical because they are necessarily equivalent”),
the definitions fail when states of affairs (or propositions) are regarded as
hyperintensional entities. The identity conditions for states of affairs are more
fine-grained than material or necessary equivalence. Furthermore, when 𝐹
is non-symmetric, there is no obvious way to account for the identity of 𝐹𝑎𝑏
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and 𝐹∗𝑏𝑎 by appealing to some notion of “constituents.” On what grounds,
expressible in 2OL, would one claim that the distinct constituents 𝐹, 𝐹∗, 𝑎, and
𝑏 can be combined so that the identity 𝐹𝑎𝑏 = 𝐹∗𝑏𝑎 holds?30 And how can one
state hyperintensional identity conditions for states of affairs that also allow
us to assert, in the case of a non-symmetric relation 𝐹, that 𝐹𝑎𝑏 = 𝐹∗𝑏𝑎?
MacBride, as noted at the outset, finalizes this problem for any analysis

of the identity (or non-identity) of states of affairs as a dilemma. We earlier
provided an edited version of the argument to give the reader the general idea.
But the passage posing the dilemma goes as follows, in full:

What vexes the understanding is the difficulty of disentangling
one degree of relatedness from another when we try to provide
an analysis of the fundamental fact that 𝑎𝑅𝑏 ≠ 𝑏𝑅𝑎 for non-
symmetric 𝑅. We can usefully distinguish, albeit in a rough and
ready sense, between two analytic strategies for explaining this
fundamental fact—that the world exhibits relatedness in the first
degree. Intrinsic analyses aim to account for the fact that 𝑎𝑅𝑏 ≠
𝑏𝑅𝑎 by appealing to features of those states themselves; extrinsic
analyses attempt to account for their difference by appealing to
features that aren’t wholly local to them. Anyone who wishes to
give an analysis of the fact that 𝑎𝑅𝑏 ≠ 𝑏𝑅𝑎 faces a dilemma. If
they adopt the intrinsic strategy then they will find it difficult to
avoid a commitment to either 𝑅’s converse or an inherent order in
which 𝑅 applies to the things it relates. Alternatively our would-
be analyst can avoid entangling the first degree with the second
and third by adopting the extrinsic strategy. But this approach
embroils us in other unwelcome consequences. Since neither
intrinsic nor extrinsic analyses are satisfactory, this recommends
our taking the fact that 𝑎𝑅𝑏 ≠ 𝑏𝑅𝑎 to be primitive. (2014, 8, italics
in original)

I think MacBride reaches this conclusion because he doesn’t have a precise
theory of relations and states of affairs to provide an answer. In the remainder

30 You can’t assert the principle 𝐹𝑥𝑦 = 𝐺𝑧𝑤 ≡ (𝐹 = 𝐺 & 𝑥 = 𝑧 & 𝑦 = 𝑤), for the scenario in
which cat-on-mat (𝑂𝑐𝑚) and mat-under-cat (𝑂∗𝑚𝑐) are identical constitutes a counterexample.
For the principle would imply the instance𝑂𝑐𝑚 = 𝑂∗𝑚𝑐 ≡ (𝑂 = 𝑂∗ & 𝑐 = 𝑚&𝑚 = 𝑐). And
from the fact that𝑂 ≠ 𝑂∗, or the fact that 𝑐 ≠ 𝑚, it would follow that𝑂𝑐𝑚 ≠ 𝑂∗𝑚𝑐. So this
is no help, since we’re trying to explain how we can have, simultaneously,𝑂 ≠ 𝑂∗ and 𝑐 ≠ 𝑚,
and yet𝑂𝑐𝑚 = 𝑂∗𝑚𝑐.

doi: 10.48106/dial.v76.i2.07

https://doi.org/10.48106/dial.v76.i2.07


32 Edward N. Zalta

of the paper, I show how object theory (OT) takes 𝑛-ary relations as primi-
tive (including states of affairs, understood as 0-ary relations), takes relation
application (predication) as primitive, but defines identity for relations and
states of affairs. These identity conditions don’t appeal to “decompositions” or
“constituents.” Nevertheless, they allow one to consistently assert that (some)
necessarily equivalent relations and states may be distinct. Using this theory
of relations and states, we can address the “profusion of states” problem (in
MacBride 2014) in either of two ways and address the problem underlying the
first puzzling conclusion (in MacBride 2022) as well. As we shall see, a precise
theory of relations and states may leave certain identity questions open, just
as the precise theory of sets ZFC leaves open certain identity questions. The
solution in ZFC is not to conclude that its quantifiers can’t range over sets
but to find and justify axioms that help decide the open questions within
the precise, but extendable, framework ZFC provides (i.e., one that clearly
quantifies over sets). Something similar happens in OT.

5 The Theory of Relations and States of Affairs

This section can be skipped by those familiar with OT since the material
contained herein has been outlined and explained in a number of publica-
tions [e.g., Zalta (1983); -Zalta (1988); -Zalta (1993); Bueno, Menzel and Zalta
(2014); Menzel and Zalta (2014); and others]. For those completely unfamiliar
with it, OT may be sketched briefly by saying that it extends 2OL, not 2OL=,
since identity isn’t taken as a primitive. OT adds to 2OL new atomic formulas
of the form “𝑥𝐹,” which represent a new mode of predication that can be
read as “𝑥 encodes 𝐹,” where “𝐹” can be replaced by any unary predicate.
Intuitively, “𝑥𝐹” expresses the idea that 𝐹 is one of the properties by which we
conceive and characterize an abstract, intentional object 𝑥.31 OT also includes
a distinguished unary relation constant “𝐸!” for being concrete, a primitive
necessity operator (�), and a defined possibility operator (♦). OT then defines
ordinary objects (“𝑂!𝑥”) as objects 𝑥 that might exemplify concreteness and
defines abstract objects (“𝐴!𝑥”) as objects 𝑥 that couldn’t exemplify concrete-
ness. It is axiomatic that ordinary objects necessarily fail to encode properties

31 For example, consider the content of the mental image we have of Mark Twain and ask, How
does the property of having a walrus mustache characterize that content? The content of the
image is characterized by the property, but the content doesn’t exemplify the property—Mark
Twain exemplifies the property. But I would say that the content encodes the property, and since
encoding is a mode of predication, the property characterizes the content.
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(𝑂!𝑥 → �¬∃𝐹𝑥𝐹), though the theory allows that abstract objects can both ex-
emplify and encode properties. It is also axiomatic that if 𝑥 encodes a property,
it necessarily does so (𝑥𝐹 → �𝑥𝐹).
But the key principle for abstract objects is the comprehension schema that

asserts, for any condition (formula) 𝜑 in which 𝑥 doesn’t occur free, that there
exists an abstract object that encodes all and only the properties such that 𝜑:

(15) ∃𝑥(𝐴!𝑥 & ∀𝐹(𝑥𝐹 ≡ 𝜑))

Here are some instances, expressed in technical English:

• There exists an abstract object that encodes all and only the properties
that 𝑦 exemplifies. ∃𝑥(𝐴!𝑥 & ∀𝐹(𝑥𝐹 ≡ 𝐹𝑦))

• There exists an abstract object that encodes just the property 𝐺.
∃𝑥(𝐴!𝑥 & ∀𝐹(𝑥𝐹 ≡ 𝐹 = 𝐺))

• There is an abstract object that encodes all the properties necessarily
implied by 𝐺. ∃𝑥(𝐴!𝑥 & ∀𝐹(𝑥𝐹 ≡ �∀𝑥(𝐺𝑥 → 𝐹𝑥)))

• There is an abstract object that encodes all and only the propositional
properties constructed out of true propositions.

∃𝑥(𝐴!𝑥 & ∀𝐹(𝑥𝐹 ≡ ∃𝑝(𝑝 & 𝐹 = [𝜆𝑥𝑝])))

And so on. Intuitively, for any group of properties you can specify to describe
an abstract object, there is an abstract object that encodes just those properties
and no others.
The other principles of this theory that will play an important role in what

follows are the definitions of identity for individuals and the principles (exis-
tence and identity conditions) for relations. First, the theory of identity for
individuals includes a definition stipulating that 𝑥 and 𝑦 are identical if and
only if they are both ordinary objects that necessarily exemplify the same
properties or they are both abstract objects that necessarily encode the same
properties:

(16) 𝑥 = 𝑦 ≡df (𝑂!𝑥&𝑂!𝑦&�∀𝐹(𝐹𝑥 ≡ 𝐹𝑦))∨(𝐴!𝑥&𝐴!𝑦&�∀𝐹(𝑥𝐹 ≡ 𝑦𝐹))

Second, the theory of relations consists of existence and identity conditions for
relations. The existence conditions are derived since OT includes the resources
of the relational 𝜆-calculus; 𝜆-expressions of the form [𝜆𝑥1…𝑥𝑛𝜑] are well-
formed, but only if 𝜑 doesn’t have any encoding subformulas.32 So (𝜆C), as

32 In the latest version of OT, currently under development (Zalta 2024), every formula𝜑 becomes a
permissible matrix of a 𝜆-expression, but not every 𝜆-expression has a denotation. If the variables
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stated above, is the main axiom governing 𝜆-expressions. One can derive from
(𝜆C) amodal version of (??). This theorem schema, (�CP), asserts existence
conditions for relations as follows:33

Modal Comprehension for Relations (�CP)
∃𝐹𝑛�∀𝑥1…∀𝑥𝑛(𝐹𝑛𝑥1…𝑥𝑛 ≡ 𝜑), provided 𝐹 doesn’t occur free in
𝜑 and 𝜑 doesn’t contain any encoding subformulas.

When 𝑛 = 1 and 𝑛 = 0, respectively, this principle asserts existence conditions
for properties and states of affairs:

∃𝐹�∀𝑥(𝐹𝑥 ≡ 𝜑), provided 𝐹 doesn’t occur free in 𝜑 and 𝜑 doesn’t
contain any encoding subformulas.

∃𝑝�(𝑝 ≡ 𝜑), provided𝑝doesn’t occur free in𝜑 and𝜑doesn’t contain
any encoding subformulas.

In otherwords, any formula free of encoding conditions can be used to produce
a well-formed instance of (�CP). It is of some interest that there are still very
small models of OT; for example, the smallest model involves one possible
world, one ordinary object, two 0-ary relations, two unary relations, two binary
relations, etc., and four abstract objects. Though the models grow when OT
is applied, minimal models show that without further axioms, the theory
doesn’t commit one to much. Thus, relations, properties, and states of affairs
exist under conditions analogous to those in classical, modal 2OL.34
The identity conditions for relations are stated by cases: (a) for properties 𝐹

and 𝐺, (b) for 𝑛-ary relations 𝐹 and 𝐺 (𝑛 ≥ 2), and (c) for states of affairs 𝑝
and 𝑞. Identity for relations and states of affairs is defined in terms of identity
for properties. The definitions are as follows:

bound by the 𝜆 don’t occur as primary terms in an encoding formula in 𝜑, the resulting 𝜆-
expression is stipulated to denote a relation. So in the latest versions of the theory, 𝜆-expressions
are governed by a free logic. But for this paper, the published versions of the theory suffice; the
logic of well-formed 𝜆-expressions is classical.

33 The proof of this principle from (𝜆C) is analogous to the proof in footnote 16, except that you
use the Rule of Necessitation after universally generalizing on 𝑥1,… ,𝑥𝑛 and just before
existentially generalizing on the 𝜆-expression.

34 Again, in the latest version of OT, under development in Zalta (2024), one can derive that every
formula denotes a state of affairs—even formulas containing encoding subformulas. But this
doesn’t hold for property and relation comprehension though; not every formula with free
variables 𝑥1,… ,𝑥𝑛 can be turned into a 𝜆-expression that is guaranteed to denote.
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• Properties 𝐹 and 𝐺 are identical if and only if 𝐹 and 𝐺 are necessarily
encoded by the same objects, i.e.,

(17) 𝐹 = 𝐺 ≡df �∀𝑥(𝑥𝐹 ≡ 𝑥𝐺)

• 𝑛-ary relations 𝐹 and 𝐺 (𝑛 ≥ 2) are identical just in case, for any 𝑛 − 1
objects, every way of applying 𝐹 and 𝐺 to those 𝑛 − 1 objects results in
identical properties, i.e.,

(18) 𝐹 = 𝐺 ≡df ∀𝑦1…∀𝑦𝑛−1([𝜆𝑥 𝐹𝑥𝑦1…𝑦𝑛−1] = [𝜆𝑥 𝐺𝑥𝑦1…𝑦𝑛−1] &
[𝜆𝑥 𝐹𝑦1𝑥𝑦2…𝑦𝑛−1] = [𝜆𝑥 𝐺𝑦1𝑥𝑦2…𝑦𝑛−1] & …&
[𝜆𝑥 𝐹𝑦1…𝑦𝑛−1𝑥] = [𝜆𝑥 𝐺𝑦1…𝑦𝑛−1𝑥])

• States of affairs 𝑝 and 𝑞 are identical whenever (the property) being an
individual 𝑧 such that 𝑝 is identical to (the property) being an individual
𝑧 such that 𝑞, i.e.,

(19) 𝑝 = 𝑞 ≡df [𝜆𝑧 𝑝] = [𝜆𝑧 𝑞]

From these definitions, it can be shown that the reflexivity of identity holds
universally, i.e., that 𝑥 = 𝑥 is derivable from (16), that 𝐹 = 𝐹 is derivable from
each of (17) and (18), and that 𝑝 = 𝑝 is derivable from (19). So OT asserts only
the substitution of identicals as an axiom governing identity. It therefore has
all the theorems about identity that are derivable in 2OL=. Identity is provably
symmetric, transitive, etc., and since every term of the theory is interpreted
rigidly, substitution of identicals holds in any (modal) context whatsoever.
Since (𝜆C) is an axiom of OT, the foregoing facts make it clear that (8) is also

a theorem of OT, by the same reasoning used in the proofs given earlier in the
paper. So as soon as one adds the hypothesis that a particular binary relation,
say 𝑅, is non-symmetric, OT also implies that 𝑅∗ ≠ 𝑅. And so on for ternary
relations. The multiplicity of relations is just a fact about both 2OL= and OT
when these systems are extended with the claim that non-symmetric relations
exist. So taking relations and relation application as primitive still yields
multiple converse relations for 𝑛-ary relations (𝑛 ≥ 2). This is a consequence
one should accept if we take relations and relation application as primitive
and treat them as hyperintensional entities.35 This multiplicity isn’t egregious,

35 Recall the passages in MacBride (2014), where he says, “We simply have to accept as primitive, in
the sense that it cannot be further explained, the fact that one thing bears a relation to another”
(2014, 2); “[…] we should just take the difference between 𝑎𝑅𝑏 and 𝑏𝑅𝑎 as primitive” (2014, 14);
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in any case, for as we’ve seen, 𝜆-expressions give us the expressive power to
distinguish among the converses of (non-symmetric) relations. So let’s return
to the questions about the identity of states of affairs to see how they fare with
a precise theory of relations and states of affairs in hand.

6 Asserting the Identity of States

Recall that the puzzling conclusion reached inMacBride’s (2022) paper turned
on the question of whether the states of affairs denoted by [9] and [10] are
the same or distinct. This question can now be posed without discussing the
converses of relations and without invoking 3OL. Let 𝑅 be any symmetric
relation, and let 𝑎 and 𝑏 be two particular and distinct objects. Then consider
the states of affairs 𝑅𝑎𝑏 and 𝑅𝑏𝑎 (or, if you prefer, [𝜆 𝑅𝑎𝑏] and [𝜆 𝑅𝑏𝑎]).
MacBride apparently has no doubt they are the same state. So let’s suppose
they are, i.e., that 𝑅𝑎𝑏 = 𝑅𝑏𝑎. And let’s again grant him the ordinalized
readings of relational claims. What happens to the argument in which he
concludes that if we understand “𝐹𝑎𝑏” in terms of ordinalized, higher-order
properties, then “𝑅𝑎𝑏” and “𝑅𝑏𝑎” don’t express the same state of affairs?
Answer: it has no force against the theory of states of affairs in OT. For in
OT, all that is relevant to the truth of “𝑅𝑎𝑏 = 𝑅𝑏𝑎” is principle (19), i.e., the
question of whether the properties [𝜆𝑧𝑅𝑎𝑏] and [𝜆𝑧𝑅𝑏𝑎] are identical, i.e., by
(17), whether there might be objects that encode [𝜆𝑧 𝑅𝑎𝑏] without encoding
[𝜆𝑧𝑅𝑏𝑎] (or vice versa). Given these definitions, one could, should one wish to
do so, simply use OT to assert, as an axiom, that when𝑅 is symmetric, [𝜆𝑧𝑅𝑎𝑏]
and [𝜆𝑧𝑅𝑏𝑎] are identical, i.e., that no abstract object encodes [𝜆𝑧𝑅𝑎𝑏]without
also encoding [𝜆𝑧 𝑅𝑏𝑎], and vice versa.
Does this mean we don’t understand the open formula “𝐹𝑎𝑏” or the quanti-

fied claim “∃𝐹(𝐹𝑎𝑏)”? Not at all. First, the semantics of OT is perfectly precise
on this score. Let “𝒂” and “𝒃” be the semantic names of the objects assigned to
“𝑎” and “𝑏.” Now consider some assignment 𝑓 to the variables of the language,
and suppose that “𝑹” is the semantic name of the relation assigned to the
variable “𝐹” by 𝑓. Then the open formula “𝐹𝑎𝑏” is true relative to 𝑓 if and
only if the state of affairs 𝑹𝒂𝒃 obtains.36 And “∃𝐹(𝐹𝑎𝑏)” is true just in case

and “The difficulties that result from attempting to analyse the first degree suggest that that the
operation of relational application should itself be taken as primitive” (2014, 15).

36 OT does have a formal semantics, but its primary purpose is to establish that the theory has a
set-theoretic model. Given the assignments to “𝑎,” “𝑏,” and “𝐹” mentioned in the text, the formal
semantics implies that “𝐹𝑎𝑏” is true relative to 𝑓 if and only if the ordered pair ⟨𝒂, 𝒃⟩ is in the
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some relation in the domain satisfies the open formula “𝐹𝑎𝑏,” no matter how
that relation is specified.
Second, OT doesn’t require a formal semantics to be intelligible, just as

ZF is intelligible when we express its primitive notions and axioms within
first-order logic. The axioms and theorems of OT give us an understanding of
the open formula “𝑥𝐹” and, in turn, give us an understanding of the identity
conditions for states of affairs expressed in (19). To suggest otherwise would
be like suggesting that we don’t understand “𝑥 ∈ 𝑦.” This is a primitive of
set theory; set identity is stated in terms of this primitive, in the form of the
principle of extensionality. The more we work through the consequences of
the axioms (i.e., the more theorems we prove in set theory), the better we
understand “𝑥 ∈ 𝑦.” Analogous observations hold with respect to OT. The
formula “𝑥𝐹” is a primitive mode of predication, and the identity conditions
for properties and relations are stated in terms of this primitive. The more we
work through the consequences of the axioms, the better we understand this
form of predication.
So if one is inclined to accept MacBride’s view that the states of affairs

expressed by [9] and [10] are identical, one should then be inclined to accept
the following general principle:

(20) ∀𝐹�(Symmetric(𝐹) → ∀𝑥∀𝑦(𝐹𝑥𝑦 = 𝐹𝑦𝑥))

(20) is consistent with OT.We need not conclude that the open formula “𝐹𝑎𝑏”
is unintelligible or that the second-order quantifiers don’t range over relations.
Instead, we make use of a theory of relations and states of affairs in which
relation application is primitive but identity is defined. And we address the
problem by asserting a principle, not by concluding that the language is
unintelligible; indeed, it seems to be the principle that MacBride is relying
upon to make his case.
This generalizes to non-symmetric relations. For recall the objection to (14),

which is the claim:

(14) ∀𝐹�(Non-symmetric(𝐹) → ∀𝑥∀𝑦(𝐹𝑥𝑦 = 𝐹∗𝑦𝑥))

exemplification extension of the relation 𝑹. And this latter holds if and only if the extension of
the 0-ary relation 𝑹𝒂𝒃 is The True. But these semantic conditions only give us a set-theoretic
representation of the truth conditions; they are not a substitute for the metaphysics of relations,
predication, and states of affairs.
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The problem with (14), according to MacBride, is to explain how different
decompositions can give rise to the same state [-MacBride (2014), 4; quoted
above]. But no such explanation is needed, since the identity of states of affairs
is not a matter of decompositions and constituents. If 𝐹 is non-symmetric,
then the above principle implies, by definition (19), that [𝜆𝑧𝐹𝑥𝑦] = [𝜆𝑧𝐹∗𝑦𝑥],
for any objects 𝑥 and 𝑦. That is consistent with OT.
Why does this address the difficulty in MacBride (2014, 4)? The answer:

because we’re not attempting to explain how “distinct existences” (i.e., a non-
symmetric relation 𝐹, its converse 𝐹∗, and objects 𝑥 and 𝑦) can “give rise” to
the same state; we’re instead proposing that one adopt a principle (indeed,
a principle on which MacBride relies) that asserts that they do, without ap-
pealing to “decompositions,” “constituents,” etc. The definitions of identity
for abstract objects (16) and for properties (17) place reciprocal bounds on
the existence of these entities. The theory’s comprehension principle and
identity conditions for abstract objects tell us that any (expressible) condition
on properties can be used to define an abstract object. If we think of abstract
objects as objects of thought or as logical objects, then the theory implies that
if properties 𝐹 and 𝐺 are distinct, then there is a logical, abstract object of
thought that encodes 𝐹 and not 𝐺 (and vice versa). And if 𝐹 and 𝐺 are identi-
cal, then no logical, abstract object of thought encodes 𝐹 without encoding
𝐺. So if the properties [𝜆𝑧 𝐹𝑥𝑦] and [𝜆𝑧 𝐹∗𝑦𝑥] are identical, then no logical,
abstract object of thought encodes the one without encoding the other.37
By adopting (14), one can use OT’s theory of identity for states of affairs to

give a precise, theoretical answer to a philosophical question (“Under what
conditions are states of affairs identical?”) which, if left unanswered, would
leave one open to MacBride’s concerns about the intelligibility of 2OL and
2OL=.38

37 One practical consequence of this identification is this: it prevents one from telling a consistent
story about a fictional object, say 𝑐, in which 𝐹𝑥𝑦 is true in the story but 𝐹∗𝑦𝑥 is not, for some
relation 𝐹 and objects 𝑥 and 𝑦. For example, if you believe cat-on-mat is identical tomat-under-
cat, then you can’t tell a consistent story in which one is true and the other is not, or consistently
describe a fictional object such that one is true while the other is not. I’m not ruling out stories
where some fictional character believes that 𝑅𝑎𝑏 and doesn’t believe that 𝑅∗𝑏𝑎, for in that case,
we’re not talking about the states denoted by “𝑅𝑎𝑏” and “𝑅∗𝑏𝑎,” but about the senses of these
expressions. AndOT represents these as abstract states of affairs, which requires the typed version
of OT. See Zalta (1988), Zalta (2020).

38 This answer, if adopted, would put to rest another of MacBride’s concerns, namely, that endorsing
distinct converses for non-symmetric relations requires a commitment to a “substantive linguistic
doctrine,” namely, that when we switch from the active “Antony loves Cleopatra” to the passive
“Cleopatra is loved by Antony,” we “introduce a novel subject matter” (MacBride 2014, 5). But
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Before we turn, finally, to the intuition that states of affairs like those
expressed by [9] and [10] are distinct, there is one final way to formulate the
concern that MacBride has raised, given his understanding of the identity of
states of affairs. Consider the property [𝜆𝑧 𝐹𝑧𝑦], i.e., being an object 𝑧 such
that 𝑧 and 𝑦 exemplify 𝐹. Now predicate that property of 𝑥 to obtain the state
of affairs [𝜆𝑧𝐹𝑧𝑦]𝑥, i.e., 𝑥 exemplifies the property of being a 𝑧 such that 𝑧 and
𝑦 exemplify 𝐹. Put this aside for the moment and now consider the property
[𝜆𝑧 𝐹𝑥𝑧], i.e., being an object 𝑧 such that 𝑥 and 𝑧 exemplify 𝐹. Now predicate
that property of 𝑦 to obtain the state of affairs [𝜆𝑧 𝐹𝑥𝑧]𝑦, i.e., 𝑦 exemplifies
the property of being a 𝑧 such that 𝑥 and 𝑧 exemplify 𝐹. Now, we might ask:

(A) What is the relationship between the states of affairs 𝐹𝑥𝑦, [𝜆𝑧 𝐹𝑧𝑦]𝑥,
and [𝜆𝑧 𝐹𝑥𝑧]𝑦—are they all the same or are they all pairwise distinct?

If you accept MacBride’s view about the identity of states of affairs, then you
would answer (A) by adopting the following principles:

(21) ∀𝐹�(𝐹𝑥𝑦 = [𝜆𝑧 𝐹𝑧𝑦]𝑥)
(22) ∀𝐹�([𝜆𝑧 𝐹𝑧𝑦]𝑥 = [𝜆𝑧 𝐹𝑥𝑧]𝑦)

From these principles, it also follows, by the transitivity of identity, that
∀𝐹�(𝐹𝑥𝑦 = [𝜆𝑧 𝐹𝑥𝑧]𝑦).
I’m not suggesting that this is the only or best answer to (A) because there

may be contexts where one might wish to distinguish these states of affairs
(see the next section). But the general point is clear. Some precise, axiomatized
theories leave open certain questions of identity, and those questions can be
answered by looking for principles rather than questioning whether the quan-
tifiers of the theory range over the entities being axiomatized. ZFC has precise
identity conditions for sets but leaves open the Continuum Hypothesis
(“CH”), and yet we can still interpret the quantifiers in set theory as ranging
over sets. CH can be formulated as the claim 2ℵ0 = ℵ1, and though CH and its
negation are consistent with ZFC, we don’t give up the interpretation of the
quantifiers of ZFC as ranging over sets just because CH is an open question;

our solution allows one to agree with MacBride that if the subject matter is defined by the state
of affairs being referenced, there is no change—one can move from “Antony loves Cleopatra”
to “Cleopatra is loved by Antony” without changing the subject matter, since those sentences
designate, on this view, the same state of affairs.
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instead, we look for axioms that will help decide the issue. The same applies
to the theory of relations.39
As it turns out, there is an alternative way to respond to the problems

MacBride has raised. It may be of interest to some readers to consider what
happens to his arguments if one instead asserts that 𝐹𝑥𝑦 ≠ 𝐹𝑦𝑥 when 𝐹 is
symmetric, or accepts that𝐹𝑥𝑦 ≠ 𝐹∗𝑦𝑥when𝐹 is non-symmetric, or generally
accepts that 𝐹𝑥𝑦 ≠ [𝜆𝑧 𝐹𝑥𝑧]𝑦 ≠ [𝜆𝑧 𝐹𝑧𝑦]𝑥. In the final section, then, I show
that, with OT’s theory of states of affairs,

• one may alternatively assert these non-identities;
• one can account for the intuition that there is one part of the world that
makes these distinct states true when they are true; and, consequently,

• one can disarm the worry about a “profusion” of states of affairs and
clear the path for understanding the quantifiers of 2OL and 2OL= as
quantifying over relations.

7 Distinct States, One Situation

What is drivingMacBride’s certainty that (a) 𝐹𝑥𝑦 = 𝐹𝑦𝑥when 𝐹 is symmetric,
(b) 𝐹𝑥𝑦 = 𝐹∗𝑦𝑥 when 𝐹 is non-symmetric, and (c) 𝐹𝑥𝑦 = [𝜆𝑧 𝐹𝑥𝑧]𝑦 =
[𝜆𝑧 𝐹𝑧𝑦]𝑥 generally? The argument is most clearly stated for the case of non-
symmetric relations, where he argues that if non-symmetric relations have
distinct converses, then we end up with “a profusion of states of affairs.” We
laid out the argument in section 4, in the quote from (2014, 4), about there
being one state of affairs (i.e., one cat-mat orientation) despite there being two
kinds of undertakings (putting the cat on the mat and putting the mat under
the cat). Since to undertake to do something is to attempt to bring about a state
of affairs, one might then conclude that there are two distinct undertakings
precisely because there are two distinct states of affairs to be brought about.
But, as we saw earlier, MacBride and Fine both conclude that there is only
one state and that to claim otherwise is counterintuitive. And we saw that
the concern is that converse relations commit us to the principle that if 𝐹
is non-symmetric, then the state of affairs 𝐹𝑥𝑦 is distinct from the state of
affairs 𝐹∗𝑦𝑥. We have formally represented the principle that concerns them
as follows:

39 I’m indebted to Daniel Kirchner, who was able to use his implementation of OT in Isabelle/HOL
(2017) to confirm the consistency of separately adding (14), (20), (21), and (22) to OT.
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(13) ∀𝐹�(Non-symmetric(𝐹) → ∀𝑥∀𝑦(𝐹𝑥𝑦 ≠ 𝐹∗𝑦𝑥))

But notice that the cases MacBride (and Fine) discuss involve necessarily non-
symmetric relations, such as on, on top of, above, etc. So when we instantiate
(13) to a necessarily non-symmetric relation, say 𝑅, it would follow by the K
axiom of modal logic that �∀𝑥∀𝑦(𝑅𝑥𝑦 ≠ 𝑅∗𝑦𝑥). But of course, we can also
infer, from the fact that (𝜆C) is a universal, necessary truth, that�∀𝑥∀𝑦(𝑅𝑥𝑦 ≡
𝑅∗𝑦𝑥).40 So we can generalize to conclude that whenever we assert that 𝑅 is
a necessarily non-symmetric relation, (𝜆C) and (13) combine to ensure that
𝑅𝑥𝑦 and 𝑅∗𝑦𝑥 are necessarily equivalent but distinct states of affairs, for any
values of the variables 𝑥 and 𝑦.
The real problem is now laid bare: the hyperintensionality of states of affairs

appears to undermine the intuition that in these cases, there is only one piece
of the world (e.g., one cat-mat orientation) that accounts for the truth of the
relational claims “𝑅𝑎𝑏” and “𝑅∗𝑏𝑎” when they are true. Note that this same
problem arises for the other cases we’re considering. I take it MacBride would
similarly be concerned about the following principle regarding symmetric
relations:

(23) ∀𝐹�(Symmetric(𝐹) → ∀𝑥∀𝑦(𝐹𝑥𝑦 ≠ 𝐹𝑦𝑥))

And the concern extends generally to principles such as the following, which
would govern every binary relation:

(24) ∀𝐹�∀𝑥∀𝑦(𝐹𝑥𝑦 ≠ [𝜆𝑧 𝐹𝑧𝑦]𝑥)
(25) ∀𝐹�∀𝑥∀𝑦([𝜆𝑧 𝐹𝑧𝑦]𝑥 ≠ [𝜆𝑧 𝐹𝑥𝑧]𝑦)

In each case, a “profusion” of states of affairs will arise, for it can be shown (a)
that (𝜆C) and (23) imply that for any necessarily symmetric relation 𝑅, 𝑅𝑥𝑦
and 𝑅𝑦𝑥 are necessarily equivalent but distinct;41 and (b) that (𝜆C), (24), and

40 This holds for any binary relation 𝐹. As an instance of (𝜆C), we know [𝜆𝑥𝑦 𝐹𝑦𝑥]𝑥𝑦 ≡ 𝐹𝑦𝑥.
So by definition (7), 𝐹∗𝑥𝑦 ≡ 𝐹𝑦𝑥, which, by the commutativity of the biconditional, im-
plies 𝐹𝑦𝑥 ≡ 𝐹∗𝑥𝑦. So by applying, in order, the Rule of Generalization (2×) and the
Rule of Necessitation, we obtain �∀𝑦∀𝑥(𝐹𝑦𝑥 ≡ 𝐹∗𝑥𝑦), which is an alphabetic variant of
�∀𝑥∀𝑦(𝐹𝑥𝑦 ≡ 𝐹∗𝑦𝑥).

41 Suppose �Symmetric(𝑅). Then, by the definition of a symmetric relation, both �∀𝑥∀𝑦(𝑅𝑥𝑦 →
𝑅𝑦𝑥) and�∀𝑥∀𝑦(𝑅𝑦𝑥 → 𝑅𝑥𝑦), where the latter follows by universal quantifier commutativity
and substitution from �∀𝑦∀𝑥(𝑅𝑦𝑥 → 𝑅𝑥𝑦), which is an alphabetic variant of the former. So
�∀𝑥∀𝑦(𝑅𝑥𝑦 ≡ 𝑅𝑦𝑥). But by (23) and the K axiom, �∀𝑥∀𝑦(𝑅𝑥𝑦 ≠ 𝑅𝑦𝑥). So again, we have
that 𝑅𝑥𝑦 and 𝑅𝑦𝑥 are necessarily equivalent, but distinct.
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(25) imply that for any relation 𝑅, the states 𝑅𝑥𝑦, [𝜆𝑧 𝑅𝑥𝑧]𝑦, and [𝜆𝑧 𝑅𝑧𝑦]𝑥
are all pairwise necessarily equivalent but all pairwise distinct.42
So if one accepts (13) and (23)–(25), can we account for the intuition

that there is only one piece of the world in virtue of which the necessarily-
equivalent-but-distinct states of affairs are true when they are true? To answer
this question, we shall not invoke “decompositions” and “constituents,” for the
identity for states of affairs is given by (19). But we can address the intuition
driving MacBride, Fine, and no doubt others, by appealing to the notion of a
situation and defining the conditions under which a state of affairs 𝑝 obtains
in a situation 𝑠 (i.e., the conditions under which 𝑠makes 𝑝 true). Once these
notions are defined, we can identify, for any state of affairs 𝑝, a canonical
situation 𝑠 in which obtain all and only the states of affairs necessarily implied
by 𝑝. Then, the canonical situation in which obtain the states necessarily im-
plied by 𝑅𝑎𝑏 will be identical to the canonical situation in which obtain the
states necessarily implied by 𝑅∗𝑏𝑎; this will follow from the fact that 𝑅𝑎𝑏 and
𝑅∗𝑏𝑎 are necessarily equivalent. And similar results follow for states arising
from necessarily symmetric relations and for the states 𝑅𝑎𝑏, [𝜆𝑥 𝑅𝑥𝑏]𝑎, and
[𝜆𝑥𝑅𝑎𝑥]𝑏. As I develop this response, I’ll use 𝑅 as an arbitrary binary relation,
which is necessarily non-symmetric, or symmetric, or unspecified, as the case
may be.
InOT (Zalta 1993, 410), situations are defined as abstract objects that encode

only properties constructed out of states of affairs, i.e., encode only properties
𝐹 of the form [𝜆𝑧 𝑝], where 𝑝 ranges over states of affairs:

(26) Situation(𝑥) ≡df 𝐴!𝑥 & ∀𝐹(𝑥𝐹 → ∃𝑝(𝐹 = [𝜆𝑧 𝑝]))

42 The states 𝐹𝑥𝑦, [𝜆𝑧𝐹𝑧𝑦]𝑥, and [𝜆𝑧𝐹𝑥𝑧]𝑦 are all necessarily equivalent by (𝜆C) and the Rule
of Necessitation, but they are pairwise distinct by (24) and (25). Note that philosophers have
argued for (24) and (25); Menzel (1993, 81–83) considers the case of:

[17] 100 is less than 1000.
[3] 100 is submillenial.

He then suggests that the proposition expressed by [17] (𝐿ℎ𝑡) differs (structurally) from the
proposition expressed by [3] ([𝜆𝑥 𝐿𝑥𝑡]ℎ)—the former is a binary predication, whereas the
latter is a unary or monadic predication. It is of interest to note that Menzel’s system rejects
𝜂-Conversion—it doesn’t endorse, for example, [𝜆𝑥𝑦 𝐹𝑥𝑦] = 𝐹 (Menzel 1993, 82). Daniel
Kirchner notes (personal communication) that it would be easier to model (24) and (25) in the
Isabelle/HOL implementation of OT if one were to generally drop 𝜂-Conversion. This is an
interesting avenue of research.
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A situation, thus defined, is not a mere mereological sum because encoding
is a mode of predication; a situation is therefore characterized by the state-
of-affairs properties of the form [𝜆𝑧 𝑝] that it encodes. In addition, a state of
affairs 𝑝 obtains in a situation 𝑠 (“𝑠 ⊧ 𝑝”) just in case 𝑠 encodes being a 𝑧 such
that 𝑝 (Zalta 1993, 411):

(27) 𝑠 ⊧ 𝑝 ≡df 𝑠[𝜆𝑧 𝑝]

In what follows, therefore, we sometimes extend the notion of encoding by
saying that 𝑠 encodes a state of affairs 𝑝, or that 𝑠 makes 𝑝 true, whenever
𝑝 obtains in 𝑠. That is, when 𝑠 ⊧ 𝑝, we can say either 𝑠 encodes [𝜆𝑧 𝑝], or 𝑠
encodes 𝑝, or 𝑠makes 𝑝 true.
Now consider some state of affairs, say 𝑅𝑎𝑏. Given the foregoing definitions,

OT implies that there exists a situation 𝑠 such that a state of affairs 𝑝 obtains
in 𝑠 if and only if 𝑝 is necessarily implied by 𝑅𝑎𝑏. To see this, note that the
comprehension principle for abstract objects asserts that there is an abstract
object that encodes exactly those properties 𝐹 such that 𝐹 is a property of the
form [𝜆𝑧 𝑝] when 𝑝 is some state of affairs necessarily implied by 𝑅𝑎𝑏:

(28) ∃𝑥(𝐴!𝑥 & ∀𝐹(𝑥𝐹 ≡ ∃𝑝(�(𝑅𝑎𝑏 → 𝑝) & 𝐹 = [𝜆𝑧 𝑝])))

Let 𝑠1 be such an object, so that we know:

(29) 𝐴!𝑠1 & ∀𝐹(𝑠1𝐹 ≡ ∃𝑝(�(𝑅𝑎𝑏 → 𝑝) & 𝐹 = [𝜆𝑧 𝑝]))

Since 𝑠1 is abstract and every property it encodes is a property of the form
[𝜆𝑧 𝑝], it follows that 𝑠1 is a situation by definition (26). Moreover, the theory
implies that 𝑠1 is unique, i.e., that any abstract object that encodes all and
only those states of affairs necessarily implied by 𝑅𝑎𝑏 is identical to 𝑠1. Since
situations are abstract objects, they are identical whenever they encode the
same properties.43 And since situations, by (26), encode only properties 𝐹
such that ∃𝑝(𝐹 = [𝜆𝑧 𝑝]), they obey the principle: 𝑠 and 𝑠′ are identical just
in case the same states of affairs obtain in 𝑠 and 𝑠′ (Zalta 1993, 412, Theorem
2). So there can’t be two distinct abstract objects that encode all and only the
states of affairs necessarily implied by 𝑅𝑎𝑏. Since (28) has a unique witness,

43 Strictly speaking, the definition of identity (16) implies that abstract objects 𝑥 and 𝑦 are identical
if and only if necessarily they encode the same properties. But since 𝑥𝐹 → �𝑥𝐹 is an axiom
of OT, it follows that if 𝑥 and 𝑦 encode the same properties, they necessarily encode the same
properties, and so it is sufficient to show ∀𝐹(𝑥𝐹 ≡ 𝑦𝐹) to establish that 𝑥 = 𝑦, for abstract 𝑥
and 𝑦.
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we may treat 𝑠1 as a name of this witness (introduced by definition) and treat
(29) as a fact about 𝑠1 implied by the definition.
Two modal facts about 𝑠1 become immediately relevant:

• A state of affairs obtains in 𝑠1 if and only if it is necessarily implied by
𝑅𝑎𝑏, i.e.,

(30) ∀𝑝(𝑠1 ⊧ 𝑝 ≡ �(𝑅𝑎𝑏 → 𝑝)).

• 𝑠1 ismodally closed in the following sense: for any states of affairs 𝑝 and
𝑞, if 𝑝 obtains in 𝑠1 and 𝑝 necessarily implies 𝑞, then 𝑞 obtains in 𝑠1, i.e.,

(31) ∀𝑝∀𝑞((𝑠1 ⊧ 𝑝) &�(𝑝 → 𝑞) → (𝑠1 ⊧ 𝑞)).

The proof of (30) is straightforward and, interestingly, relies on the object-
theoretic definition for the identity for states of affairs (19).44 Note that it
immediately follows from (30) that 𝑅𝑎𝑏 obtains in 𝑠1, since �(𝑅𝑎𝑏 → 𝑅𝑎𝑏)
is an instance of the modal principle ∀𝑝�(𝑝 → 𝑝). The proof of (31) relies
on both the definition of identity for states of affairs (19) and the fact that
necessary implication is transitive, i.e., the fact that:

• ∀𝑝∀𝑞∀𝑟(�(𝑝 → 𝑞) &�(𝑞 → 𝑟) → �(𝑝 → 𝑟))

The proof of (31) is left to a footnote.45

44 We prove the universal claim by showing that the biconditional holds for an arbitrary state of
affairs, say 𝑞1. To show the left-to-right direction, assume 𝑠1 ⊧ 𝑞1, to show �(𝑅𝑎𝑏 → 𝑞1). Then,
by definition of obtains in (27), 𝑠1[𝜆𝑧 𝑞1]. So by a fact about 𝑠1, namely the second conjunct
of (29), it follows that ∃𝑝(�(𝑅𝑎𝑏 → 𝑝) & [𝜆𝑧 𝑞1] = [𝜆𝑧 𝑝]). Let 𝑞2 be such a state of affairs,
so that we know �(𝑅𝑎𝑏 → 𝑞2) & [𝜆𝑧 𝑞1] = [𝜆𝑧 𝑞2]. By the definition of identity for states of
affairs (19), the second conjunct implies 𝑞1 = 𝑞2. But then, substituting identicals into the first
conjunct, we obtain �(𝑅𝑎𝑏 → 𝑞1).
For the right-to-left direction, assume �(𝑅𝑎𝑏 → 𝑞1). By the reflexivity of identity, [𝜆𝑧 𝑞1] =

[𝜆𝑧 𝑞1]. Hence �(𝑅𝑎𝑏 → 𝑞1) & [𝜆𝑧 𝑞1] = [𝜆𝑧 𝑞1]. So ∃𝑝(�(𝑅𝑎𝑏 → 𝑝) & [𝜆𝑧 𝑞1] = [𝜆𝑧 𝑝]).
Then by a fact about 𝑠1, namely the second conjunct of (29), 𝑠1[𝜆𝑧 𝑞1], and by definition of
obtains in (27), 𝑠1 ⊧ 𝑞1.

45 We prove the doubly-universal claim by showing that it holds for arbitrary states of affairs 𝑝1
and 𝑞1. So assume both

(a) 𝑠1 ⊧ 𝑝1
(b) �(𝑝1 → 𝑞1)

to show 𝑠1 ⊧ 𝑞. By definition (27), (a) implies 𝑠1[𝜆𝑧 𝑝1]. From this fact and the second conjunct
of (29), it follows that ∃𝑝(�(𝑅𝑎𝑏 → 𝑝)&[𝜆𝑧𝑝1] = [𝜆𝑧𝑝]). Suppose 𝑟1 is an arbitrary such state
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It is an immediate consequence of (30) that:

• if 𝑅 is necessarily non-symmetric, then 𝑅∗𝑏𝑎 obtains in 𝑠1, for it is
necessarily equivalent to, and so necessarily implied by, 𝑅𝑎𝑏;

• if 𝑅 is necessarily symmetric, then 𝑅𝑏𝑎 obtains in 𝑠1, for it is necessarily
equivalent to, and so necessarily implied by, 𝑅𝑎𝑏; and

• if 𝑅 is any binary relation whatsoever, then [𝜆𝑥 𝑅𝑥𝑏]𝑎 and [𝜆𝑥 𝑅𝑎𝑥]𝑏
both obtain in 𝑠1, since these are both necessarily equivalent to, and so
necessarily implied by, 𝑅𝑎𝑏.

Moreover, when 𝑅 is necessarily non-symmetric, it follows that neither 𝑅𝑏𝑎
nor 𝑅∗𝑎𝑏 obtain in 𝑠1, since neither is necessarily implied by 𝑅𝑎𝑏 in that case.
It is interesting to observe that in each of the above scenarios, any one of

the necessarily equivalent states of affairs in question can be used to define
the unique situation in which they all obtain. The resulting situations become
identified, since it is a theorem of modal logic that necessarily equivalent
states of affairs necessarily imply the same states of affairs:

(32) ∀𝑝∀𝑞(�(𝑝 ≡ 𝑞) → ∀𝑟(�(𝑝 → 𝑟) ≡ �(𝑞 → 𝑟)))

To see why this fact helps us to show that the resulting situations are all
identified, consider the case of necessarily non-symmetric 𝑅 and consider
the situation that can be introduced in a manner similar to 𝑠1 but with 𝑅∗𝑏𝑎
instead of 𝑅𝑎𝑏:

∃𝑥(𝐴!𝑥 & ∀𝐹(𝑥𝐹 ≡ ∃𝑝(�(𝑅∗𝑏𝑎 → 𝑝) & 𝐹 = [𝜆𝑧 𝑝])))

This is the (provably unique) situation that makes all and only the states of
affairs necessarily implied by 𝑅∗𝑏𝑎 true. Call this 𝑠2. Clearly, facts analogous
to (30) and (31) hold for 𝑠2: a state of affairs 𝑝 obtains in 𝑠2 if and only if 𝑅∗𝑏𝑎
necessarily implies 𝑝, and 𝑠2 is modally closed.
But OT implies that 𝑠1 = 𝑠2.46 Moreover, the reasoning in the proof applies

to all the other canonical situations definable in terms of the necessarily

of affairs, so that we know �(𝑅𝑎𝑏 → 𝑟1) & [𝜆𝑧 𝑝1] = [𝜆𝑧 𝑟1]. The second conjunct of this last
result implies, by the identity of states of affairs (19), that 𝑝1 = 𝑟1. Hence�(𝑅𝑎𝑏 → 𝑝1). But this
last fact and (b) jointly imply �(𝑅𝑎𝑏 → 𝑞1), by the transitivity of necessary implication. Hence
�(𝑅𝑎𝑏 → 𝑞1) & [𝜆𝑧 𝑞1] = [𝜆𝑧 𝑞1], by reflexivity of identity and conjunction introduction. So
∃𝑝(�(𝑅𝑎𝑏 → 𝑝) & [𝜆𝑧 𝑞1] = [𝜆𝑧 𝑝]). But this implies, by the second conjunct of (29), that
𝑠1[𝜆𝑧 𝑞1]. Hence 𝑠1 ⊧ 𝑞1, by definition of obtains in (27).

46 Proof . To show 𝑠1 = 𝑠2, it suffices to show that they encode the same properties, for as we noted
earlier in footnote 43, the object-theoretic principle 𝑥𝐹 → �𝑥𝐹 implies that if 𝑠1 and 𝑠2 encode
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equivalent states of affairs mentioned above: these canonical situations are
pairwise identical. Thus, in each example, there is a single canonical situation
in which all of the states of affairs mentioned in the example obtain.
Finally, to account for the intuition that the situation in which the nec-

essarily equivalent states obtain is part of the actual world, we turn to the
principles (theorems and definitions) governing part of, actual situations, and
possible worlds. Since “𝑥 is a part of 𝑦” is defined as ∀𝐹(𝑥𝐹 → 𝑦𝐹), it follows
that a situation 𝑠 is part of a situation 𝑠′ (𝑠E𝑠′) just in case every state of affairs
that obtains in 𝑠 also obtains in 𝑠′ (Zalta 1993, 412, Theorem 4). Moreover, an
actual situation is a situation 𝑠 such that every state of affairs that obtains in
𝑠 obtains simpliciter (Zalta 1993, 413). And a possible world is a situation 𝑠
that might be such that it makes true all and only the truths (Zalta 1993, 414).
Formally:

𝑠E 𝑠′ ≡ ∀𝑝(𝑠 ⊧ 𝑝 → 𝑠′ ⊧ 𝑝)

𝐴𝑐𝑡𝑢𝑎𝑙(𝑠) ≡df ∀𝑝(𝑠 ⊧ 𝑝 → 𝑝)

PossibleWorld(𝑠) ≡df ♦∀𝑝(𝑠 ⊧ 𝑝 ≡ 𝑝)

OT then yields, as theorems (1993, Theorem 18 and 19):

There is a unique actual world, i.e.,

the same properties, then necessarily they encode the same properties. To show 𝑠1 and 𝑠2 encode
the same properties, we show, for an arbitrarily chosen property, say 𝑃, that 𝑠1𝑃 ≡ 𝑠2𝑃. Without
loss of generality, we show only 𝑠1𝑃 → 𝑠2𝑃, since the proof of the converse is analogous. So,
assume 𝑠1𝑃. Then, by definition of 𝑠1,

∃𝑝(�(𝑅𝑎𝑏 → 𝑝) & 𝑃 = [𝜆𝑦 𝑝])

Let 𝑞1 be such a state of affairs, so that we know �(𝑅𝑎𝑏 → 𝑞1) and 𝑃 = [𝜆𝑦 𝑞1]. Now, earlier
we saw that when 𝑅 is necessarily non-symmetric, �(𝑅𝑥𝑦 ≡ 𝑅∗𝑦𝑥). Hence, �(𝑅∗𝑏𝑎 ≡ 𝑅𝑎𝑏).
So by an appropriate instance of (32), it follows that ∀𝑟(�(𝑅∗𝑏𝑎 → 𝑟) ≡ �(𝑅𝑎𝑏 → 𝑟)).
Instantiating this last result to 𝑞1, it follows that �(𝑅∗𝑏𝑎 → 𝑞1) ≡ �(𝑅𝑎𝑏 → 𝑞1). But we
already know �(𝑅𝑎𝑏 → 𝑞1). Hence, �(𝑅∗𝑏𝑎 → 𝑞1). So we have established:

�(𝑅∗𝑏𝑎 → 𝑞1) & 𝑃 = [𝜆𝑦 𝑞1]

By existential generalization:

∃𝑝(�(𝑅∗𝑏𝑎 → 𝑝) & 𝑃 = [𝜆𝑦 𝑝])

But then, by definition of 𝑠2, it follows that 𝑠2𝑃.
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∃!𝑠(PossibleWorld(𝑠) & Actual(𝑠)) (“𝑤𝛼”)

Every actual situation is a part of the actual world, i.e.,
∀𝑠(Actual(𝑠) → 𝑠E 𝑤𝛼)

The proof of the first theorem rests on the fact that there is a unique situation
that encodes all and only the states of affairs that obtain, i.e., there is a unique
situation 𝑠 such that all and only the states that obtain in 𝑠 are states that
obtain simpliciter.47
So the canonical situations that exist in each of the examples validate the

following claims:

• When𝑅 is necessarily non-symmetric and𝑅𝑎𝑏 obtains, there is a unique
situation that (a) encodes all and only the states of affairs necessarily
implied by 𝑅𝑎𝑏, (b) is actual, (c) is a part of the actual world, and (d)
makes both 𝑅𝑎𝑏 and 𝑅∗𝑏𝑎 true.

• When 𝑅 is necessarily symmetric and 𝑅𝑎𝑏 obtains, there is a unique
situation that (a) encodes all and only the states of affairs necessarily
implied by 𝑅𝑎𝑏, (b) is actual, (c) is a part of the actual world, and (d)
makes both 𝑅𝑎𝑏 and 𝑅𝑏𝑎 true.

• When 𝑅 is any binary relation and 𝑅𝑎𝑏 obtains, there is a unique situa-
tion that (a) encodes all and only the states of affairs necessarily implied
by 𝑅𝑎𝑏, (b) is actual, (c) is a part of the actual world, and (d) makes 𝑅𝑎𝑏,
[𝜆𝑥 𝑅𝑥𝑏]𝑎, and [𝜆𝑥 𝑅𝑎𝑥]𝑏 true.

This addresses the intuition that served as the obstacle to treating states of
affairs as hyperintensional entities. It lays to rest the claim that we don’t
understand the open formula “𝐹𝑎𝑏” and the claim that we can’t interpret the
quantifier in “∃𝐹(𝐹𝑎𝑏)” as ranging over relations.
The foregoing analysis therefore preserves the conclusion that Russell

developed concerning non-symmetric relations when he said (1903, sec. 219)
regarding the terms greater and less:

47 The proof goes by way of an instance of comprehension that asserts:

∃𝑥(𝐴!𝑥 & ∀𝐹(𝑥𝐹 ≡ ∃𝑝(𝑝 & 𝐹 = [𝜆𝑦 𝑝])))

One can then prove that any such object, call it 𝑎, is a possible world, is actual (i.e., every state of
affairs that obtains in 𝑎 obtains simpliciter), and that any other situation that is a possible world
and actual is identical to 𝑎. So one can then legitimately introduce the name𝑤𝛼 in terms of the
description: the actual world.
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These two words have certainly each a meaning, even when no
terms are mentioned as related by them. And they certainly have
different meanings, and are certainly relations. Hence if we are
to hold that “𝑎 is greater than 𝑏” and “𝑏 is less than 𝑎” are the
same proposition, we shall have to maintain that both greater and
less enter into each of these propositions, which seems obviously
false.

Onemight reframeRussell’s point by noting that if non-synonymous relational
expressions signify or denote different relations, then the simple statements
we can make using those expressions signify different states of affairs. That
principle has been preserved, without sacrificing any contrary intuitions.

8 Conclusion

I think relations and predication are so fundamental that they cannot be
analyzed in more basic terms. They can only be axiomatized, and the most
elegant formalismwe have for doing so is the language of 2OL. The suggestion
that the quantifiers of 2OL can’t range over relations doesn’t get any purchase
against OT. The latter is a friendly extension of 2OL and provides 2OL with
the additional expressive power needed to assert a precise theory of relations
and states of affairs that includes plausible existence and identity conditions
for these entities. OT therefore offers a natural formalism for intelligibly
quantifying over relations and states of affairs and thus provides a deeper
understanding of the open and quantified formulas of 2OL. So the suggestion
that the quantifiers of 2OL can’t be interpreted as ranging over relations fails
to engage with at least one theory that shows that they can and, without any
heroic measures, do.*

Edward N. Zalta
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* I’d like to thank Fraser MacBride and Jan Plate, who read drafts and contributed insightful
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