Thomas Forster (forster-t)
My contributions to Philosophie.ch
No contributions yet
Bibliography
Forster, Thomas. 2001a. “Church’s Set Theory without a Universal
Set.” in Logic, Meaning and
Computation: Essays in Memory of Alonzo Church, edited by
Curtis Anthony Anderson and Michael Zelëny, pp. 109–138. Synthese
Library n. 304. Dordrecht: Kluwer Academic Publishers.
Forster, Thomas. 2001b. “Review of Lu (1998).” Studia
Logica: An International Journal for Symbolic Logic 67(1): 149–150.
Forster, Thomas. 2003.
“Foreword.” Logique et Analyse
46(181): 5–6.
Forster, Thomas. 2004. “The Significance of Yablo’s Paradox Without
Self-Reference.” Logique et Analyse 47(185–188):
461–462.
Forster, Thomas. 2006a. “Quine’s New Foundations.” in The Stanford Encyclopedia of Philosophy.
Stanford, California: The Metaphysics Research Lab, Center for the Study
of Language; Information, https://plato.stanford.edu/archives/sum2006/entries/quine-nf/.
Forster, Thomas. 2006b. “The Axiom of Choice and Inference to the Best
Explanation.” Logique et Analyse 49(194):
191–197.
Forster, Thomas. 2006c. “Deterministic and Nondeterministic Strategies for
Hintikka Games in First-Order and Branching-Quantifier
Logic.” Logique et Analyse 49(195): 265–269.
Forster, Thomas. 2007. “Implementing Mathematical Objects in Set
Theory.” Logique et Analyse 50(197): 79–86.
Forster, Thomas. 2008. “The Iterative Conception of Set.” The
Review of Symbolic Logic 1(1): 97–110.
Forster, Thomas. 2010a. “Rhetorical Devices in Analytic Philosophy.”
Logique et Analyse 53(210): 93–100.
Forster, Thomas. 2010b. “NF at (nearly) 75.” Logique et
Analyse 53(212): 483–491.
Forster, Thomas. 2011. “Yablo’s Paradox and the Omitting Types Theorem for
Propositional Languages.” Logique et Analyse
54(215): 323–326.
Forster, Thomas. 2016. “Mathematical Objects arising from Equivalence Relations
and their Implementation in Quine’s NF.” Philosophia
Mathematica 24(1): 50–59.
Forster, Thomas. 2018. “Quine’s New Foundations.” in The Stanford Encyclopedia of Philosophy.
Stanford, California: The Metaphysics Research Lab, Center for the Study
of Language; Information, https://plato.stanford.edu/archives/sum2018/entries/quine-nf/.
Forster, Thomas and Goré, Rajeev. 2016. “Yablo’s Paradox as a Theorem of Modal
Logic.” Logique et Analyse 59(235): 265–271.
Holmes, M. Randall, Forster, Thomas and Libert, Thierry. 2012. “Alternative
Set Theories.” in Handbook of the
History of Logic. Volume 6: Sets and Extensions in the Twentieth
Century, edited by Dov M. Gabbay, Akihiro Kanamori, and John Woods, pp. 559–632. Amsterdam: Elsevier Science
Publishers B.V.
Further References
Lu, Zhongwan. 1998. Mathematical Logic for Computer Science. 2nd
ed. Singapore: World Scientific Publishing Co.