Kein Profilbild | No profile picture | Utilisateur n'as pas d'image
https://philosophie.ch/profil/forster-t

Thomas Forster (forster-t)

My contributions to Philosophie.ch

No contributions yet

Bibliography

    Forster, Thomas. 2001a. Church’s Set Theory without a Universal Set.” in Logic, Meaning and Computation: Essays in Memory of Alonzo Church, edited by Curtis Anthony Anderson and Michael Zelëny, pp. 109–138. Synthese Library n. 304. Dordrecht: Kluwer Academic Publishers.
    Forster, Thomas. 2001b. Review of Lu (1998).” Studia Logica: An International Journal for Symbolic Logic 67(1): 149–150.
    Forster, Thomas. 2003. Foreword.” Logique et Analyse 46(181): 5–6.
    Forster, Thomas. 2004. The Significance of Yablo’s Paradox Without Self-Reference.” Logique et Analyse 47(185–188): 461–462.
    Forster, Thomas. 2006a. Quine’s New Foundations.” in The Stanford Encyclopedia of Philosophy. Stanford, California: The Metaphysics Research Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/sum2006/entries/quine-nf/.
    Forster, Thomas. 2006b. The Axiom of Choice and Inference to the Best Explanation.” Logique et Analyse 49(194): 191–197.
    Forster, Thomas. 2006c. Deterministic and Nondeterministic Strategies for Hintikka Games in First-Order and Branching-Quantifier Logic.” Logique et Analyse 49(195): 265–269.
    Forster, Thomas. 2007. Implementing Mathematical Objects in Set Theory.” Logique et Analyse 50(197): 79–86.
    Forster, Thomas. 2008. The Iterative Conception of Set.” The Review of Symbolic Logic 1(1): 97–110.
    Forster, Thomas. 2010a. Rhetorical Devices in Analytic Philosophy.” Logique et Analyse 53(210): 93–100.
    Forster, Thomas. 2010b. NF at (nearly) 75.” Logique et Analyse 53(212): 483–491.
    Forster, Thomas. 2011. Yablo’s Paradox and the Omitting Types Theorem for Propositional Languages.” Logique et Analyse 54(215): 323–326.
    Forster, Thomas. 2016. Mathematical Objects arising from Equivalence Relations and their Implementation in Quine’s NF.” Philosophia Mathematica 24(1): 50–59.
    Forster, Thomas. 2018. Quine’s New Foundations.” in The Stanford Encyclopedia of Philosophy. Stanford, California: The Metaphysics Research Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/sum2018/entries/quine-nf/.
    Forster, Thomas and Goré, Rajeev. 2016. Yablo’s Paradox as a Theorem of Modal Logic.” Logique et Analyse 59(235): 265–271.
    Holmes, M. Randall, Forster, Thomas and Libert, Thierry. 2012. Alternative Set Theories.” in Handbook of the History of Logic. Volume 6: Sets and Extensions in the Twentieth Century, edited by Dov M. Gabbay, Akihiro Kanamori, and John Woods, pp. 559–632. Amsterdam: Elsevier Science Publishers B.V.

Further References

    Lu, Zhongwan. 1998. Mathematical Logic for Computer Science. 2nd ed. Singapore: World Scientific Publishing Co.