Kein Profilbild | No profile picture | Utilisateur n'as pas d'image
https://philosophie.ch/profil/maclane-s

Saunders MacLane (maclane-s)

Contributions to Philosophie.ch

No contributions yet

Bibliography

    MacLane, Saunders. 1971a. Categories for the Working Mathematician. Berlin: Springer.
    MacLane, Saunders. 1971b. Categorical Algebra and Set-Theoretic Foundations.” in Axiomatic Set Theory, edited by Thomas J. Jech, pp. 231–240. Proceedings of Symposia in Pure Mathematics n. 13.2. Providence, Rhode Island: American Mathematical Society. Proceedings of the Symposium held at the University of California, Los Angeles, July 10 – August 5, 1967.
    MacLane, Saunders. 1975. Sets, Topoi, and Internal Logic in Categories.” in Logic Colloquium ’73, edited by H. E. Rose and John C. Shepherdson, pp. 119–134. Studies in Logic and the Foundations of Mathematics n. 80. Amsterdam: North-Holland Publishing Co.
    MacLane, Saunders. 1986. Mathematical Logic is Neither Foundation Nor Philosophy.” Philosophia Mathematica s2-1(1–2): 3–14, doi:10.1093/philmat/s2-1.1-2.3.
    MacLane, Saunders. 1991. Category Theory.” in Handbook of Metaphysics and Ontology, edited by Hans Burkhardt and Barry Smith. Analytica: Investigations in Logic, Ontology, and the Philosophy of Language n. 2. München: Philosophia Verlag.
    MacLane, Saunders. 1997. Categorical Foundations of the Protean Character of Mathematics.” in Philosophy of Mathematics Today, edited by Evandro Agazzi and György Darvas, pp. 117–122. Episteme n. 22. Dordrecht: Springer.
    MacLane, Saunders. 1998. Categories for the Working Mathematician. 2nd ed. Berlin: Springer. First edition: MacLane (1971a).
    MacLane, Saunders. 2001. The Lambda Calculus and Adjoint Functors.” in Logic, Meaning and Computation: Essays in Memory of Alonzo Church, edited by Curtis Anthony Anderson and Michael Zelëny, pp. 181–184. Synthese Library n. 304. Dordrecht: Kluwer Academic Publishers.
    MacLane, Saunders and Moerdijk, Ieke. 1992. Sheaves in Geometry and Logic. A First Introduction to Topos Theory. Berlin: Springer.