Kein Profilbild | No profile picture | Utilisateur n'as pas d'image
https://philosophie.ch/profil/zakharyaschev

Michael Zakharyaschev (zakharyaschev)

Contributions to Philosophie.ch

No contributions yet

Bibliography

    Balbiani, Philippe, Nobi-Yuki, Suzuki, Wolter, Frank and Zakharyaschev, Michael, eds. 2003. Advances in Modal Logic. vol. IV. London: King’s College Publications.
    Chagrov, Alexander V. and Zakharyaschev, Michael. 1997. Modal Logic. Oxford Logic Guides n. 35. Oxford: Oxford University Press.
    Gabbay, Dov M., Kurucz, Ágnes, Wolter, Frank and Zakharyaschev, Michael. 2003. Many-Dimensional Modal Logics: Theory and Applications. Studies in Logic and the Foundations of Mathematics n. 148. Amsterdam: North-Holland Publishing Co.
    Ghilardi, Silvio, Lutz, Carsten, Wolter, Frank and Zakharyaschev, Michael. 2006. Conservative Extensions in Modal Logic.” in Advances in Modal Logic, volume VI, edited by Guido Governatori, Ian Hodkinson, and Yde Venema, pp. 187–207. London: King’s College Publications.
    Konev, B., Kontchakov, Roman, Wolter, Frank and Zakharyaschev, Michael. 2006. Dynamic Topological Logics over Spaces with Continuous Functions.” in Advances in Modal Logic, volume VI, edited by Guido Governatori, Ian Hodkinson, and Yde Venema, pp. 299–318. London: King’s College Publications.
    Kontchakov, Roman, Kurucz, Ágnes and Zakharyaschev, Michael. 2005. Undecidability of First-Order Intuitionistic and Modal Logics with Two Variables.” The Bulletin of Symbolic Logic 11(3): 428–438.
    Kontchakov, Roman, Lutz, Carsten, Wolter, Frank and Zakharyaschev, Michael. 2004. Temporalizing Tableaux.” Studia Logica: An International Journal for Symbolic Logic 76(1): 91–134.
    Kontchakov, Roman, Pratt-Hartmann, Ian, Wolter, Frank and Zakharyaschev, Michael. 2008. Topology, Connectedness, and Modal Logic.” in Advances in Modal Logic, volume VII, edited by Carlos Areces and Robert L. Goldblatt, pp. 151–176. London: College Publications.
    Kurucz, Ágnes, Wolter, Frank and Zakharyaschev, Michael. 2010. Islands of Tractability for Relational Constraints: Towards Dichotomy Results for the Description Logic EL.” in Advances in Modal Logic, volume VIII, edited by Lev D. Beklemishev, Valentin Goranko, and Valentin Shehtman, pp. 271–291. London: King’s College Publications.
    Kurucz, Ágnes and Zakharyaschev, Michael. 2003. A Note on Relativised Products of Modal Logics.” in Advances in Modal Logic, volume IV, edited by Philippe Balbiani, Suzuki Nobi-Yuki, Frank Wolter, and Michael Zakharyaschev, pp. 221–242. London: King’s College Publications.
    Kutz, Oliver, Wolter, Frank and Zakharyaschev, Michael. 2002. Connecting Abstract Description Systems.” in KR’02: Principles of Knowledge Representation and Reasoning, edited by Dieter Fensel, Fausto Giunchiglia, Deborah L. McGuinness, and Mary-Anne Williams, pp. 215–226. San Francisco, California: Morgan Kaufmann Publishers.
    Sheremet, M., Tishkovsky, D., Wolter, Frank and Zakharyaschev, Michael. 2006. From Topology to Metric: Modal Logic and Quantification in Metric Spaces.” in Advances in Modal Logic, volume VI, edited by Guido Governatori, Ian Hodkinson, and Yde Venema, pp. 429–448. London: King’s College Publications.
    Suzuki, Yasuhito, Wolter, Frank and Zakharyaschev, Michael. 1998. Speaking about Transitive Frames in Propositional Languages.” Journal of Logic, Language, and Information 7(3): 317–339.
    Wolter, Frank, Wansing, Heinrich Theodor, de Rijke, Maarten and Zakharyaschev, Michael, eds. 2002. Advances in Modal Logic. vol. III. Singapore: World Scientific Publishing Co.
    Wolter, Frank and Zakharyaschev, Michael. 1998. Satisfiability Problem in Description Logics with Modal Operators.” in KR’98: Principles of Knowledge Representation and Reasoning, edited by Anthony G. Cohn, Lenhart K. Schubert, and Stuart C. Shapiro, pp. 512–523. San Francisco, California: Morgan Kaufmann Publishers.
    Wolter, Frank and Zakharyaschev, Michael. 1999. Intuitionistic Modal Logic.” in Logic and Foundation of Mathematics, edited by Andrea Cantini, Ettore Casari, and Pierluigi Minari, pp. 227–238. Synthese Library n. 280. Dordrecht: Kluwer Academic Publishers.
    Wolter, Frank and Zakharyaschev, Michael. 2000a. Spatio-Temporal Representation and Reasoning based on RCC-8.” in KR’00: Principles of Knowledge Representation and Reasoning, edited by Anthony G. Cohn, Fausto Giunchiglia, and Bart Selman, pp. 3–14. San Francisco, California: Morgan Kaufmann Publishers.
    Wolter, Frank and Zakharyaschev, Michael. 2000b. Dynamic Description Logics.” in Advances in Modal Logic, volume II, edited by Michael Zakharyaschev, Krister Segerberg, Maarten de Rijke, and Heinrich Theodor Wansing, pp. 449–463. Stanford, California: CSLI Publications.
    Wolter, Frank and Zakharyaschev, Michael. 2001. Decidable Fragments of First-Order Modal Logics.” The Journal of Symbolic Logic 66(3): 1415–1438.
    Wolter, Frank and Zakharyaschev, Michael. 2005. A Logic for Metric and Topology.” The Journal of Symbolic Logic 70(3): 795–828.
    Zakharyaschev, Michael. 1996. Canonical Formulas for K4, Part II: Cofinal Subframe Logics.” The Journal of Symbolic Logic 61(2): 421–449.
    Zakharyaschev, Michael. 1997a. Canonical Formulas for K4, Part III: The Finite Model Property.” The Journal of Symbolic Logic 62(3): 950–975.
    Zakharyaschev, Michael. 1997b. The Greatest Extension of S4 into which Intuitionistic Logic is Embeddable.” Studia Logica: An International Journal for Symbolic Logic 59(3): 345–358.
    Zakharyaschev, Michael. 2000. Review of Marx and Venema (1997).” Journal of Logic, Language, and Information 9(1): 131–132.
    Zakharyaschev, Michael, Segerberg, Krister, de Rijke, Maarten and Wansing, Heinrich Theodor, eds. 2000. Advances in Modal Logic. vol. II. Stanford, California: CSLI Publications.
    Zakharyaschev, Michael, Wolter, Frank and Chagrov, Alexander V. 2001. Advanced Modal Logic.” in Handbook of Philosophical Logic, Volume III, edited by Dov M. Gabbay and Franz Guenthner, 2nd ed., pp. 83–266. Dordrecht: Springer.

Further References

    Marx, Maarten and Venema, Yde. 1997. Multi-Dimensional Modal Logic. Dordrecht: Kluwer Academic Publishers.