Jouko Väänänen (vaeaenaenen)
My contributions to Philosophie.ch
No contributions yet
Bibliography
Garcı́a-Matos, Marta and Väänänen, Jouko. 2005. “Abstract Model Theory as a Framework for Universal
Logic.” in Logica
Universalis. Towards a General Theory of Logic, edited by
Jean-Yves Béziau, pp. 19–34. Basel:
Birkhäuser.
Hella, Lauri and Väänänen, Jouko. 2015. “The Size of a Formula as a Measure of
Complexity.” in Logic without
Borders. Essays on Set Theory, Model Theory, Philosophical Logic and
Philosophy of Mathematics, edited by Åsa Hirvonen, Juha Kontinen, Roman Kossak, and Andrés Villaveces, pp. 193–214. Ontos
Mathematical Logic n. 5. Berlin: de Gruyter.
Hella, Lauri, Väänänen, Jouko and Westerståhl, Dag. 1997. “Definability of Polyadic Lifts of Generalized
Quantifiers.” Journal of Logic, Language, and
Information 6(3): 305–355.
Hodges, Wilfrid and Väänänen, Jouko. 2019. “Logic and Games.” in The Stanford Encyclopedia of Philosophy.
Stanford, California: The Metaphysics Research Lab, Center for the Study
of Language; Information, https://plato.stanford.edu/archives/fall2019/entries/logic-games/.
Kennedy, Juliette and Väänänen, Jouko. 2015. “Aesthetics and the Dream of Objectivity: Notes from Set
Theory.” Inquiry 58(1): 83–98.
Oikkonen, Juha and Väänänen, Jouko, eds. 1993. Logic
Colloquium ’90. Berlin: Springer.
Väänänen, Jouko. 1979. “Remarks on Free Quantifier Variables.” in,
pp. 267–274.
Väänänen, Jouko. 1982. “Abstract Logic and Set Theory.” The
Journal of Symbolic Logic 47: 335–346.
Väänänen, Jouko. 1985. “Set-Theoretic Definability of Logics.” in
Model-Theoretic Logics, edited by Jon K. Barwise and Solomon Feferman, pp. 599–644. Perspectives in Mathematical Logic. Berlin:
Springer.
Väänänen, Jouko. 1995. “Games and Trees in Infinitary Logic: A
Survey.” in Quantifiers: Logic,
Models, and Computation. Volume One: Surveys, edited by
Michał Krynicki, Marcin Mostowski, and Lesław W. Szczerba, pp. 105–138. Synthese
Library n. 248. Dordrecht: Kluwer Academic Publishers.
Väänänen, Jouko. 1997. “Unary Quantifiers on Finite Models.”
Journal of Logic, Language, and Information 6(3): 275–304.
Väänänen, Jouko. 2001. “Second-Order Logic and Foundations of
Mathematics.” The Bulletin of Symbolic Logic 7:
504–520.
Väänänen, Jouko. 2004. “Barwise: Abstract Model Theory and Generalized
Quantifiers.” The Bulletin of Symbolic Logic 10:
37–53.
Väänänen, Jouko. 2007. Dependence Logic. A New Approach to Independence Friendly
Logic. London Mathematical Society Student
Texts n. 70. Cambridge: Cambridge University Press.
Väänänen, Jouko. 2012. “Second Order Logic, Set Theory and Foundations of
Mathematics.” in Epistemology
versus Ontology. Essays on the Philosophy and Foundations of Mathematics
in Honour of Per Martin-Löf,
edited by Peter Dybjer, Sten Lindström, Erik Palmgren, and Göran Sundholm, pp. 371–380. Logic, Epistemology, and the Unity of Science
n. 27. Dordrecht: Springer.
Väänänen, Jouko. 2014. “Multiverse Set Theory and Absolutely Undecidable
Propositions.” in Interpreting
Gödel. Critical Essays, edited
by Juliette Kennedy, pp. 180–208.
Cambridge: Cambridge University Press.
Väänänen, Jouko. 2015a. “Categoricity and Consistency in Second-Order
Logic.” Inquiry 58(1): 20–27.
Väänänen, Jouko. 2015b. “Second-Order Logic and Set Theory.”
Philosophy Compass 10(7): 463–478.
Väänänen, Jouko. 2015c. “Pursuing Logic without Borders.” in
Logic without Borders. Essays on Set Theory,
Model Theory, Philosophical Logic and Philosophy of
Mathematics, edited by Åsa Hirvonen, Juha Kontinen, Roman Kossak, and Andrés Villaveces, pp. 403–416. Ontos
Mathematical Logic n. 5. Berlin: de Gruyter.
Väänänen, Jouko. 2019. “Second-Order and Higher-Order Logic.” in
The Stanford Encyclopedia of
Philosophy. Stanford, California: The Metaphysics Research
Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/fall2019/entries/logic-higher-order/.
Väänänen, Jouko. 2024. “Second-Order and Higher-Order Logic.” in
The Stanford Encyclopedia of
Philosophy. Stanford, California: The Metaphysics Research
Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/fall2024/entries/logic-higher-order/.
Väänänen, Jouko and Westerståhl, Dag. 2002. “On the Expressive Power of Monotone Natural Language
Quantifiers over Finite Models.” The Journal of
Philosophical Logic 31(4): 327–358.