Kein Profilbild | No profile picture | Utilisateur n'as pas d'image
https://philosophie.ch/profil/vaeaenaenen

Jouko Väänänen (vaeaenaenen)

My contributions to Philosophie.ch

No contributions yet

Bibliography

    Garcı́a-Matos, Marta and Väänänen, Jouko. 2005. Abstract Model Theory as a Framework for Universal Logic.” in Logica Universalis. Towards a General Theory of Logic, edited by Jean-Yves Béziau, pp. 19–34. Basel: Birkhäuser.
    Hella, Lauri and Väänänen, Jouko. 2015. The Size of a Formula as a Measure of Complexity.” in Logic without Borders. Essays on Set Theory, Model Theory, Philosophical Logic and Philosophy of Mathematics, edited by Åsa Hirvonen, Juha Kontinen, Roman Kossak, and Andrés Villaveces, pp. 193–214. Ontos Mathematical Logic n. 5. Berlin: de Gruyter.
    Hella, Lauri, Väänänen, Jouko and Westerståhl, Dag. 1997. Definability of Polyadic Lifts of Generalized Quantifiers.” Journal of Logic, Language, and Information 6(3): 305–355.
    Hodges, Wilfrid and Väänänen, Jouko. 2019. Logic and Games.” in The Stanford Encyclopedia of Philosophy. Stanford, California: The Metaphysics Research Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/fall2019/entries/logic-games/.
    Kennedy, Juliette and Väänänen, Jouko. 2015. Aesthetics and the Dream of Objectivity: Notes from Set Theory.” Inquiry 58(1): 83–98.
    Oikkonen, Juha and Väänänen, Jouko, eds. 1993. Logic Colloquium ’90. Berlin: Springer.
    Väänänen, Jouko. 1979. Remarks on Free Quantifier Variables.” in, pp. 267–274.
    Väänänen, Jouko. 1982. Abstract Logic and Set Theory.” The Journal of Symbolic Logic 47: 335–346.
    Väänänen, Jouko. 1985. Set-Theoretic Definability of Logics.” in Model-Theoretic Logics, edited by Jon K. Barwise and Solomon Feferman, pp. 599–644. Perspectives in Mathematical Logic. Berlin: Springer.
    Väänänen, Jouko. 1995. Games and Trees in Infinitary Logic: A Survey.” in Quantifiers: Logic, Models, and Computation. Volume One: Surveys, edited by Michał Krynicki, Marcin Mostowski, and Lesław W. Szczerba, pp. 105–138. Synthese Library n. 248. Dordrecht: Kluwer Academic Publishers.
    Väänänen, Jouko. 1997. Unary Quantifiers on Finite Models.” Journal of Logic, Language, and Information 6(3): 275–304.
    Väänänen, Jouko. 2001. Second-Order Logic and Foundations of Mathematics.” The Bulletin of Symbolic Logic 7: 504–520.
    Väänänen, Jouko. 2004. Barwise: Abstract Model Theory and Generalized Quantifiers.” The Bulletin of Symbolic Logic 10: 37–53.
    Väänänen, Jouko. 2007. Dependence Logic. A New Approach to Independence Friendly Logic. London Mathematical Society Student Texts n. 70. Cambridge: Cambridge University Press.
    Väänänen, Jouko. 2012. Second Order Logic, Set Theory and Foundations of Mathematics.” in Epistemology versus Ontology. Essays on the Philosophy and Foundations of Mathematics in Honour of Per Martin-Löf, edited by Peter Dybjer, Sten Lindström, Erik Palmgren, and Göran Sundholm, pp. 371–380. Logic, Epistemology, and the Unity of Science n. 27. Dordrecht: Springer.
    Väänänen, Jouko. 2014. Multiverse Set Theory and Absolutely Undecidable Propositions.” in Interpreting Gödel. Critical Essays, edited by Juliette Kennedy, pp. 180–208. Cambridge: Cambridge University Press.
    Väänänen, Jouko. 2015a. Categoricity and Consistency in Second-Order Logic.” Inquiry 58(1): 20–27.
    Väänänen, Jouko. 2015b. Second-Order Logic and Set Theory.” Philosophy Compass 10(7): 463–478.
    Väänänen, Jouko. 2015c. Pursuing Logic without Borders.” in Logic without Borders. Essays on Set Theory, Model Theory, Philosophical Logic and Philosophy of Mathematics, edited by Åsa Hirvonen, Juha Kontinen, Roman Kossak, and Andrés Villaveces, pp. 403–416. Ontos Mathematical Logic n. 5. Berlin: de Gruyter.
    Väänänen, Jouko. 2019. Second-Order and Higher-Order Logic.” in The Stanford Encyclopedia of Philosophy. Stanford, California: The Metaphysics Research Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/fall2019/entries/logic-higher-order/.
    Väänänen, Jouko. 2024. Second-Order and Higher-Order Logic.” in The Stanford Encyclopedia of Philosophy. Stanford, California: The Metaphysics Research Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/fall2024/entries/logic-higher-order/.
    Väänänen, Jouko and Westerståhl, Dag. 2002. On the Expressive Power of Monotone Natural Language Quantifiers over Finite Models.” The Journal of Philosophical Logic 31(4): 327–358.