Richard J. Zach (zach)
My contributions to Philosophie.ch
No contributions yet
Bibliography
Avigad, Jeremy D. and Zach, Richard J. 2002. “The Epsilon
Calculus.” in The Stanford
Encyclopedia of Philosophy. Stanford, California: The
Metaphysics Research Lab, Center for the Study of Language; Information,
https://plato.stanford.edu/archives/sum2002/entries/epsilon-calculus/.
Avigad, Jeremy D. and Zach, Richard J. 2007. “The Epsilon
Calculus.” in The Stanford
Encyclopedia of Philosophy. Stanford, California: The
Metaphysics Research Lab, Center for the Study of Language; Information,
https://plato.stanford.edu/archives/fall2007/entries/epsilon-calculus/.
Avigad, Jeremy D. and Zach, Richard J. 2013. “The Epsilon
Calculus.” in The Stanford
Encyclopedia of Philosophy. Stanford, California: The
Metaphysics Research Lab, Center for the Study of Language; Information,
https://plato.stanford.edu/archives/win2013/entries/epsilon-calculus/.
Avigad, Jeremy D. and Zach, Richard J. 2019. “The Epsilon
Calculus.” in The Stanford
Encyclopedia of Philosophy. Stanford, California: The
Metaphysics Research Lab, Center for the Study of Language; Information,
https://plato.stanford.edu/archives/sum2019/entries/epsilon-calculus/.
Avigad, Jeremy D. and Zach, Richard J. 2024. “The Epsilon
Calculus.” in The Stanford
Encyclopedia of Philosophy. Stanford, California: The
Metaphysics Research Lab, Center for the Study of Language; Information,
https://plato.stanford.edu/archives/fall2024/entries/epsilon-calculus/.
Baaz, Matthias, Fermüller, Christian G. and Zach, Richard J. 1994. “Elimination of Cuts in First-Order Finite-Valued
Logics.” Journal of Information Processing and
Cybernetics 29: 333–355.
Mancosu, Paolo, Galvan, Sergio and Zach, Richard J. 2021. An Introduction to Proof Theory: Normalization,
Cut-Elimination, and Consistency Proofs. Oxford: Oxford
University Press, doi:10.1093/oso/9780192895936.001.0001.
Mancosu, Paolo, Galvan, Sergio and Zach, Richard J. 2022. Introduction
à la théorie de la
démonstration. Élimination des coupures,
normalisation et preuves de cohérence. Paris:
Librairie philosophique Jean Vrin.
Mancosu, Paolo, Zach, Richard J. and Badesa, Calixto. 2009. “The Development of Mathematical Logic from Russell to
Tarski, 1900–1935.” in The
Development of Modern Logic, edited by Leila Haaparanta, pp. 318–470. Oxford: Oxford
University Press, doi:10.1093/acprof:oso/9780195137316.001.0001.
Schiemer, Georg, Zach, Richard J. and Reck, Erich H. 2017. “Carnap’s Early Metatheory: Scope and
Limits.” Synthese 194(1): 33–65.
Zach, Richard J. 2003. “Hilbert’s Program.” in The Stanford Encyclopedia of Philosophy.
Stanford, California: The Metaphysics Research Lab, Center for the Study
of Language; Information, https://plato.stanford.edu/archives/fall2003/entries/hilbert-program/.
Zach, Richard J. 2004a. “Decidability of Quantified and Propositional
Intuitionistic Logic and S4 on Trees if Height and Arity \(\leq\omega\).” The
Journal of Philosophical Logic 33(2): 155–164.
Zach, Richard J. 2004b. “Hilbert’s ‘Verunglückter Beweis,’ the First Epsilon
Theorem, and Consistency Proofs.” History and
Philosophy of Logic 25(2): 79–94.
Zach, Richard J. 2005. “Review of Potter (2000).”
Notre Dame Journal of Formal Logic 46(4): 503–513.
Zach, Richard J. 2007. “Hilbert’s Program Then and Now.” in
Philosophy of Logic, edited by Dale
Jacquette, 1st ed., pp. 411–448. Handbook of the Philosophy of Science n. 5.
Amsterdam: Elsevier Science Publishers B.V.
Zach, Richard J. 2015. “Hilbert’s Program.” in The Stanford Encyclopedia of Philosophy.
Stanford, California: The Metaphysics Research Lab, Center for the Study
of Language; Information, https://plato.stanford.edu/archives/spr2015/entries/hilbert-program/.
Zach, Richard J. 2016. “Natural Deduction for the Sheffer Stroke and Peirce’s
Arrow (and any Other Truth-Functional Connective).”
The Journal of Philosophical Logic 45(2): 183–197.
Zach, Richard J. 2019. “Hilbert’s Program.” in The Stanford Encyclopedia of Philosophy.
Stanford, California: The Metaphysics Research Lab, Center for the Study
of Language; Information, https://plato.stanford.edu/archives/sum2019/entries/hilbert-program/.
Zach, Richard J. 2023. “Hilbert’s Program.” in The Stanford Encyclopedia of Philosophy.
Stanford, California: The Metaphysics Research Lab, Center for the Study
of Language; Information, https://plato.stanford.edu/archives/win2023/entries/hilbert-program/.
Further References
Potter, Michael D. 2000. Reason’s Nearest Kin: Philosophies of Arithmetic from
Kant to Carnap. Oxford: Oxford University Press, doi:10.1093/acprof:oso/9780199252619.001.0001.