Roy T. Cook (cook-rt)
My contributions to Philosophie.ch
Bibliography
Berg, Eric D. and Cook, Roy T. 2017. “The Propositional Logic of Frege’s Grundgesetze:
Semantics and Expressiveness.” Journal for the History
of Analytical Philosophy 5(6).
Cogburn, Jon and Cook, Roy T. 2005. “Inverted Space: Minimal Verificationism, Propositional
Attitudes, and Compositionality.” Philosophia:
Philosophical Quarterly of Israel 32(1–4): 73–92.
Cook, Roy T. 2000. “Monads and Mathematics: The Logic of Leibniz
Mereology.” Studia Leibnitiana 32(1): 1–20.
Cook, Roy T. 2002a. “Vagueness and Mathematical Precision.”
Mind 111(442): 225–246, doi:10.1093/mind/111.442.225.
Cook, Roy T. 2002b. “The State of the Economy: Neologicism and
Inflation.” Philosophia Mathematica 10(1): 43–66.
Reprinted in Cook
(2007a, 197–218).
Cook, Roy T. 2002c. “Curing the Liar Syndrome [on Johnstone (2002)].”
SATS – Northern European Journal of Philosophy 3(2): 126–141.
Cook, Roy T. 2003a. “Aristotelian Logic, Axioms, and
Abstraction.” Philosophia Mathematica 11(2):
195–202. Reprinted in Cook (2007a, 147–154).
Cook, Roy T. 2003b.
“Iteration One More Time.” Notre Dame
Journal of Formal Logic 44(2): 63–92. Reprinted in Cook (2007a,
421–421).
Cook, Roy T. 2003c. “Review of Mayberry (2001).”
The British Journal for the Philosophy of Science 54(2):
347–352.
Cook, Roy T. 2003d. “Parity and Paradox.” in The
Logica Yearbook 2002, edited by Timothy Childers and Ondrej Majer, pp. 69–84. Praha:
Filosofia. Nakladetelstvı́ Filosofického
ústavu AV ČR.
Cook, Roy T. 2004a. “Patterns of Paradox.” The Journal of
Symbolic Logic 69(3): 767–774.
Cook, Roy T. 2004b. “God, the Devil, and Gödel’s
Other Proof.” in The Logica Yearbook
2003, edited by Libor Běhounek, pp. 97–110. Praha:
Filosofia. Nakladetelstvı́ Filosofického
ústavu AV ČR.
Cook, Roy T. 2005a. “What’s Wrong with Tonk(?).” The Journal
of Philosophical Logic 34(2): 217–226.
Cook, Roy T. 2005b.
“Intuitionism Reconsidered.” in The Oxford Handbook of Philosophy of Mathematics and
Logic, edited by Stewart Shapiro, pp. 387–411. Oxford
Handbooks. Oxford: Oxford University Press, doi:10.1093/0195148770.001.0001.
Cook, Roy T. 2006. “There are Non-Circular Paradoxes (But Yablo’s isn’t One
of Them!).” The Monist 89(1): 118–149.
Cook, Roy T., ed. 2007a. The Arché Papers on the
Mathematics of Abstraction. The
University of Western Ontario Series in Philosophy of Science
n. 71. Dordrecht: Springer, doi:10.1007/978-1-4020-4265-2.
Cook, Roy T. 2007b. “Embracing Revenge: On the Indefinite Extendibility of
Language.” in Revenge of the
Liar. New Essays on the Paradox, edited by J. C. Beall, pp. 31–52. Oxford: Oxford University
Press, doi:10.1093/oso/9780199233915.001.0001.
Cook, Roy T. 2007c.
“Introduction.” in The Arché Papers on the
Mathematics of Abstraction, edited by Roy T. Cook, pp. xv–xxxvii. The
University of Western Ontario Series in Philosophy of Science
n. 71. Dordrecht: Springer, doi:10.1007/978-1-4020-4265-2.
Cook, Roy T. 2008. “ ‘P is True and Non-Cartesian’ is
Non-Cartesian.” Analysis 68(3): 183–185.
Cook, Roy T. 2009a. A Dictionary of Philosophical Logic.
Edinburgh: Edinburgh University Press.
Cook, Roy T. 2009b. “Diagonalization, the Liar Paradox, and the Inconsistency
of the Formal System Presented in the Appendix to Frege’s
Grundgesetze: Volume II.” in Proceedings of the 31st International Wittgenstein
Symposium: Reduction – Abstraction – Analysis, edited by
Alexander Hieke and Hannes Leitgeb, pp. 273–288. Publications of the Austrian Ludwig Wittgenstein Society
(new series) n. 11. Heusenstamm b. Frankfurt: Ontos Verlag.
Cook, Roy T. 2009c. “Curry, Yablo and Duality.”
Analysis 69(4): 612–620.
Cook, Roy T. 2009d. “New Waves on an Old Beach: Fregean Philosophy of
Mathematics Today.” in New Waves
in Philosophy of Mathematics, edited by Otávio Bueno and Øystein Linnebo, pp. 13–34. New
Waves in Philosophy. Basingstoke, Hampshire: Palgrave Macmillan.
Cook, Roy T. 2010. “Let a Thousand Flowers Bloom: A Tour of Logical
Pluralism.” Philosophy Compass 5(6): 492–504.
Cook, Roy T. 2011a. “The No-No Paradox Is a Paradox.”
Australasian Journal of Philosophy 89(3): 467–482.
Cook, Roy T. 2011b. “Alethic Pluralism, Generic Truth and Mixed
Conjunctions.” The Philosophical Quarterly
61(244): 624–629.
Cook, Roy T. 2012a. “The T-Schema is Not a Logical Truth.”
Analysis 72(2): 231–239.
Cook, Roy T. 2012b. “Art, Open-Endedness, and Indefinite
Extensibility.” in Art & Abstract
Objects, edited by Christy Mag
Uidhir, pp. 87–107. Basingstoke, Hampshire: Palgrave Macmillan,
doi:10.1093/acprof:oso/9780199691494.001.0001.
Cook, Roy T. 2012c. “Universals and Abstract Objects.” in
The Continuum Companion to
Metaphysics, edited by Neil A. Manson and Robert Barnard, pp. 67–89. London: Bloomsbury
Academic.
Cook, Roy T. 2012d. “Impure
Sets Are Not Located: A Fregean Argument.”
Thought 1(3): 219–229.
Cook, Roy T. 2012e. “Review of Heck (2011).”
Philosophia Mathematica 20(3): 346–359.
Cook, Roy T. 2013a.
Paradoxes. Chichester: Wiley-Blackwell.
Cook, Roy T. 2013b. “Critical Notice of Humberstone (2011).”
Australasian Journal of Philosophy 91(2): 395–405.
Cook, Roy T. 2013c. “How to Read Grundgesetze.” in
Basic Laws of Arithmetic, pp.
A-1-A42. Oxford: Oxford University Press. Translated and edited by
Philip A. Ebert and Marcus Rossberg, with Crispin Wright.
Cook, Roy T. 2014a. The Yablo Paradox. An Essay on Circularity.
Oxford: Oxford University Press, doi:10.1093/acprof:oso/9780199241323.001.0001.
Cook, Roy T. 2014b. “Review of Blanchette (2012).”
Philosophia Mathematica 22(1): 108–120.
Cook, Roy T. 2014c. “Review of Copeland, Posy and Shagrir
(2013).” Philosophia Mathematica 22(3):
412–413.
Cook, Roy T. 2014d. “Should Anti-Realists be Anti-Realists About
Anti-Realism?” Erkenntnis 79(suppl., 2): 233–258,
doi:10.1007/s10670-013-9475-y.
Cook, Roy T. 2016a. “Frege’s Cardinals and Neo-Logicism.”
Philosophia Mathematica 24(1): 60–90.
Cook, Roy T. 2016b. “Conservativeness, Cardinality, and Bad
Company.” in Abstractionism. Essays in Philosophy of
Mathematics, edited by Philip A. Ebert and Marcus Rossberg, pp. 223–246. Oxford: Oxford
University Press, doi:10.1093/acprof:oso/9780199645268.001.0001.
Cook, Roy T., ed. 2017a. LEGO and Philosophy: Constructing Reality Brick by
Brick. Philosophy and Pop Culture
Series. Chichester: Wiley-Blackwell, doi:10.1002/9781119194033.
Cook, Roy T. 2017b. “Abstraction and Four Kinds of Invariance (Or: What’s So
Logical About Counting).” Philosophia Mathematica
25(1): 3–25.
Cook, Roy T. 2018a. “Review of Horgan (2017).”
Analysis 78(3): 567–569.
Cook, Roy T. 2018b. “Logic, Counterexamples, and Translation.”
in Hilary Putnam on Logic and
Mathematics, edited by Geoffrey Hellman and Roy T. Cook, pp. 17–44. Outstanding Contributions to Logic n. 9. Cham:
Springer, doi:10.1007/978-3-319-96274-0_3.
Cook, Roy T. 2018c. “The Paradox of Distinctions.” Logique
et Analyse 61(244): 429–437.
Cook, Roy T. 2018d. “Predication, Possibility, and Choice.” in
Being Necessary. Themes of Ontology and
Modality from the Work of Bob Hale, edited by Ivette Fred-Rivera and Jessica F. Leech, pp. 111–139. Oxford: Oxford University
Press, doi:10.1093/oso/9780198792161.001.0001.
Cook, Roy T. 2019. “Frege’s Little Theorem and Frege’s Way
Out.” in Essays on Frege’s
Basic Laws of Arithmetic, edited by Philip A. Ebert and Marcus Rossberg, pp. 384–410. Oxford: Oxford
University Press, doi:10.1093/oso/9780198712084.001.0001.
Cook, Roy T. 2020. “ ‘Unless’ is ‘Or,’ Unless
‘\(\neg A\) Unless \(A\)’ is Invalid.”
Dialectica 74(2). Special issue “The Formalisation
of Arguments,” guest edited by Robert Michels, doi:10.48106/dial.v74.i2.07.
Cook, Roy T. 2023. “Frege’s Logic.” in The Stanford Encyclopedia of Philosophy.
Stanford, California: The Metaphysics Research Lab, Center for the Study
of Language; Information, https://plato.stanford.edu/archives/spr2023/entries/frege-logic/.
Cook, Roy T. and Cogburn, Jon. 2001. “What Negation is Not: Intuitionism and ’0 =
1’ .” Analysis 61.
Cook, Roy T. and Ebert, Philip A. 2004. “Review of Fine (2002).” The
British Journal for the Philosophy of Science 55(4): 791–800.
Cook, Roy T. and Ebert, Philip A. 2005. “Abstraction and Identity.”
Dialectica 59(2): 121–139.
Cook, Roy T. and Ebert, Philip A. 2016. “Frege’s Recipe.” The Journal of
Philosophy 113(7): 309–345.
Cook, Roy T. and Hellman, Geoffrey. 2018. “Memories of Hilary Putnam.” in Hilary Putnam on Logic and Mathematics,
edited by Geoffrey Hellman and Roy T.
Cook, pp. 1–8. Outstanding Contributions to Logic n. 9. Cham:
Springer, doi:10.1007/978-3-319-96274-0.
Cook, Roy T. and Kim, Namjoong. 2015. “The Paradox of Adverbs.” Analysis
75(4): 559–561.
Hellman, Geoffrey and Cook, Roy T., eds. 2018a. Hilary Putnam on Logic and Mathematics. Outstanding Contributions to Logic n. 9. Cham:
Springer, doi:10.1007/978-3-319-96274-0.
Hellman, Geoffrey and Cook, Roy T. 2018b. “Extendability and Paradox.” in Hilary Putnam on Logic and Mathematics,
edited by Geoffrey Hellman and Roy T.
Cook, pp. 51–74. Outstanding Contributions to Logic n. 9. Cham:
Springer, doi:10.1007/978-3-319-96274-0.
Meskin, Aaron, Cook, Roy T. and Ellis, Warren. 2012. The Art of Comics. A Philosophical Approach.
Chichester: Wiley-Blackwell, doi:10.1002/9781444354843.
Reck, Erich H. and Cook, Roy T. 2016. “Introduction to Special Issue: Reconsidering Frege’s
Conception of Number.” Philosophia Mathematica
24(1): 1–8.
Further References
Blanchette, Patricia A. 2012. Frege’s Conception of Logic. Oxford: Oxford
University Press, doi:10.1093/acprof:oso/9780199891610.001.0001.
Copeland, B. Jack, Posy, Carl J. and Shagrir, Oron, eds. 2013. Computability: Turing, Gödel,
Church, and Beyond. Cambridge, Massachusetts: The
MIT Press.
Fine, Kit. 2002. The Limits of Abstraction. Oxford: Oxford
University Press, doi:10.1093/oso/9780199246182.001.0001.
Heck, Richard Kimberley. 2011. Frege’s Theorem. Oxford: Oxford University
Press. Originally published under the name “Richard G. Heck,
Jr.” .
Horgan, Terence E. 2017. Essays on Paradoxes. Oxford: Oxford
University Press.
Humberstone, I. Lloyd. 2011.
The Connectives. Cambridge, Massachusetts: The
MIT Press, doi:10.7551/mitpress/9055.001.0001.
Johnstone, Albert A. 2002.
“The Liar Syndrome.” SATS – Northern
European Journal of Philosophy 3(1): 37–55.
Mayberry, John Penn. 2001. The Foundation of Mathematics in the Theory of
Sets. Cambridge: Cambridge University Press.