Edward N. Zalta (zalta)
My contributions to Philosophie.ch
Bibliography
Anderson, David James and Zalta, Edward N. 2004. “Frege, Boolos, and Logical Objects.”
The Journal of Philosophical Logic 33(1): 1–26.
Bueno, Otávio, Menzel, Christopher and Zalta, Edward N. 2014. “Worlds and Propositions Set Free.”
Erkenntnis 79(4): 797–820, doi:10.1007/s10670-013-9565-x.
Bueno, Otávio and Zalta, Edward N. 2005. “A Nominalist’s Dilemma and its Solution.”
Philosophia Mathematica 13(3): 294–307.
Fitelson, Branden and Zalta, Edward N. 2007. “Steps toward a Computational Metaphysics.”
The Journal of Philosophical Logic 36(2): 227–247.
Linsky, Bernard and Zalta, Edward N. 1991. “Is Lewis a Meinongian?” Australasian
Journal of Philosophy 69: 438–453.
Linsky, Bernard and Zalta, Edward N. 1994. “In Defense of the Simplest Quantified Modal
Logic.” in Philosophical
Perspectives 8: Logic and Language, edited by James E. Tomberlin, pp. 431–458. Oxford: Blackwell
Publishers.
Linsky, Bernard and Zalta, Edward N. 1995. “Naturalized Platonism versus Platonized
Naturalism.” The Journal of Philosophy 92(10):
525–555, doi:10.2307/2940786.
Linsky, Bernard and Zalta, Edward N. 2006. “What is neologicism?” The Bulletin of
Symbolic Logic 12: 60–99.
McMichael, Alan and Zalta, Edward N. 1980. “An Alternative Theory of Nonexistent
Objects.” The Journal of Philosophical Logic
9(2): 297–313.
Menzel, Christopher and Zalta, Edward N. 2014. “The Fundamental Theorem of World Theory.”
The Journal of Philosophical Logic 43(2): 333–363, doi:10.1007/s10992-012-9265-z.
Nelson, Michael and Zalta, Edward N. 2009. “Bennett and ‘Proxy
Actualism’ .” Philosophical Studies
142(2): 277–292.
Nelson, Michael and Zalta, Edward N. 2012. “A Defense of Contingent Logical Truths.”
Philosophical Studies 157(1): 153–162.
Nodelman, Uri and Zalta, Edward N. 2014. “Foundations for Mathematical
Structuralism.” Mind 123(489): 39–78, doi:10.1093/mind/fzu003.
Oppenheimer, Paul E. and Zalta, Edward N. 1991. “On the Logic of the Ontological Argument.”
in Philosophical Perspectives 5: Philosophy of
Religion, edited by James E. Tomberlin, pp. 509–529. Atascadero, California:
Ridgeview Publishing Co.
Pelletier, Francis Jeffry and Zalta, Edward N. 2000. “How to Say Goodbye to the Third Man.”
Noûs 34(2): 165–202.
Zalta, Edward N. 1982. “Meinongian Type Theory and Its
Applications.” Studia Logica: An International Journal
for Symbolic Logic 41(2–3): 297–307.
Zalta, Edward N. 1983. Abstract Objects: An Introduction to Axiomatic
Metaphysics. Synthese Library n. 160.
Dordrecht: D. Reidel Publishing Co., doi:10.1007/978-94-009-6980-3.
Zalta, Edward N. 1985. “Lambert, Mally and the Principle of
Independence.” Grazer Philosophische Studien
25–26: 447–459. “Non-Existence and Predication,”
ed. by Rudolf Haller.
Zalta, Edward N. 1987. “On the Structural Similarities Between Worlds and
Times.” Philosophical Studies 51: 213–239.
Zalta, Edward N. 1988a. Intensional Logic and the Metaphysics of
Intentionality. Cambridge, Massachusetts: The
MIT Press.
Zalta, Edward N. 1988b. “A Comparison of Two Intensional Logics.”
Linguistics and Philosophy 11(1): 59–89.
Zalta, Edward N. 1988c. “Logical and Analytic Truths That are Not
Necessary.” The Journal of Philosophy 85(2):
57–74.
Zalta, Edward N. 1989. “Singular Propositions, Abstract Constituents, and
Propositional Attitudes.” in Themes from Kaplan, edited by Joseph Almog, John R. Perry, and Howard K. Wettstein, pp. 455–479. Oxford: Oxford
University Press.
Zalta, Edward N. 1991a. “A Theory of Situations.” in Situation Theory and Its Applications, Volume
2, volume 2, edited by Jon K. Barwise, Jean Mark Gawron, Gordon D. Plotkin, and Syun Tutiya, pp. 81–112. Stanford, California:
CSLI Publications.
Zalta, Edward N. 1991b.
“Metaphysics VI: Systematic Metaphysics.” in
Handbook of Metaphysics and
Ontology, edited by Hans Burkhardt and Barry Smith. Analytica:
Investigations in Logic, Ontology, and the Philosophy of Language
n. 2. München: Philosophia Verlag.
Zalta, Edward N. 1993a. “Twenty-Five Basic Theorems in Situation and World
Theory.” The Journal of Philosophical Logic
22(4): 385–428, doi:10.1007/bf01052533.
Zalta, Edward N. 1993b. “Replies to the Critics.” Philosophical
Studies 69(2–3): 231–242.
Zalta, Edward N. 1993c. “A Philosophical Conception of Propositional Modal
Logic.” Philosophical Topics 21(2): 263–263.
Zalta, Edward N. 1995a. “Two
(Related) World Views.” Noûs 29(2):
189–211.
Zalta, Edward N. 1995b.
“Gottlob Frege.” in The Stanford Encyclopedia of Philosophy.
Stanford, California: The Metaphysics Research Lab, Center for the Study
of Language; Information, https://plato.stanford.edu/archives/fall1997/entries/frege/.
Zalta, Edward N. 1995c. “Basic Concepts in Modal Logic.”
Unpublished manuscript.
Zalta, Edward N. 1996. “In Defense of the Contingently
Non-Concrete.” Philosophical Studies 84: 283–294.
Zalta, Edward N. 1997. “A Classically-Based Theory of Impossible
Worlds.” Notre Dame Journal of Formal Logic 38:
640–660.
Zalta, Edward N. 1998. “Frege’s Logic, Theorem, and Foundations for
Arithmetic.” in The Stanford
Encyclopedia of Philosophy. Stanford, California: The
Metaphysics Research Lab, Center for the Study of Language; Information,
https://plato.stanford.edu/archives/sum1998/entries/frege-logic/.
Zalta, Edward N. 1999. “Natural Numbers and Natural Cardinals as Abstract
Objects: A Partial Reconstruction of Frege’s Grundgesetze in
Object Theory.” The Journal of Philosophical
Logic 28(6): 619–660.
Zalta, Edward N. 2000a. “A
(Leibnizian) theory of concepts.” in Philosophie
der Neuzeit: From Descartes to Kant, edited by Uwe Meixner and Albert Newen, pp. 137–184. Logical Analysis and
History of Philosophy n. 3. Paderborn: Mentis Verlag.
Zalta, Edward N. 2000b. “Neo-Logicism? An Ontological Reduction of Mathematics to
Metaphysics.” Erkenntnis 53: 219–265.
Zalta, Edward N. 2000c. “The Road Between Pretense Theory and Abstract Object
Theory.” in Empty Names, Fiction
and the Puzzles of Non-Existence, edited by Anthony Everett and Thomas Hofweber, pp. 117–148. CSLI
Lecture Notes n. 108. Stanford, California: CSLI
Publications.
Zalta, Edward N. 2001a. “Fregean Senses, Modes of Presentation, and
Concepts.” in Philosophical Perspectives 15:
Metaphysics, edited by James E. Tomberlin, pp. 335–359. Oxford: Blackwell
Publishers.
Zalta, Edward N. 2001b. “Frege’s Logic, Theorem, and Foundations for
Arithmetic.” in The Stanford
Encyclopedia of Philosophy. Stanford, California: The
Metaphysics Research Lab, Center for the Study of Language; Information,
https://plato.stanford.edu/archives/sum2001/entries/frege-logic/.
Zalta, Edward N. 2002. “A Common Ground and Some Surprising
Connections.” The Southern Journal of Philosophy
40.
Zalta, Edward N. 2003a. “Referring to Fictional Characters.”
Dialectica 57(2): 243–254.
Zalta, Edward N. 2003b. “Frege’s Logic, Theorem, and Foundations for
Arithmetic.” in The Stanford
Encyclopedia of Philosophy. Stanford, California: The
Metaphysics Research Lab, Center for the Study of Language; Information,
https://plato.stanford.edu/archives/win2003/entries/frege-logic/.
Zalta, Edward N. 2004a. “In Defense of the Law of
Non-Contradiction.” in The Law of
Non-Contradiction: New Philosophical Essays, edited by
Graham Priest, J. C. Beall, and Bradley Armour-Garb, pp. 418–435. Oxford: Oxford
University Press, doi:10.1093/acprof:oso/9780199265176.001.0001.
Zalta, Edward N. 2004b. “Frege’s Logic, Theorem, and Foundations for
Arithmetic.” in The Stanford
Encyclopedia of Philosophy. Stanford, California: The
Metaphysics Research Lab, Center for the Study of Language; Information,
https://plato.stanford.edu/archives/fall2004/entries/frege-logic/.
Zalta, Edward N. 2004c.
“Gottlob Frege.” in The Stanford Encyclopedia of Philosophy.
Stanford, California: The Metaphysics Research Lab, Center for the Study
of Language; Information, https://plato.stanford.edu/archives/spr2004/entries/frege/.
Zalta, Edward N. 2005a. “Frege’s Logic, Theorem, and Foundations for
Arithmetic.” in The Stanford
Encyclopedia of Philosophy. Stanford, California: The
Metaphysics Research Lab, Center for the Study of Language; Information,
https://plato.stanford.edu/archives/sum2005/entries/frege-logic/.
Zalta, Edward N. 2005b.
“Gottlob Frege.” in The Stanford Encyclopedia of Philosophy.
Stanford, California: The Metaphysics Research Lab, Center for the Study
of Language; Information, https://plato.stanford.edu/archives/spr2005/entries/frege/.
Zalta, Edward N. 2006a. “Deriving and Validating Kripkean Claims Using the Theory
of Abstract Objects.” Noûs 40(4):
591–622, doi:10.1111/j.1468-0068.2006.00626.x.
Zalta, Edward N. 2006b. “Essence and Modality.” Mind
115(459): 659–693.
Zalta, Edward N. 2006c. “Frege’s Logic, Theorem, and Foundations for
Arithmetic.” in The Stanford
Encyclopedia of Philosophy. Stanford, California: The
Metaphysics Research Lab, Center for the Study of Language; Information,
https://plato.stanford.edu/archives/sum2006/entries/frege-logic/.
Zalta, Edward N. 2007. “Frege’s Logic, Theorem, and Foundations for
Arithmetic.” in The Stanford
Encyclopedia of Philosophy. Stanford, California: The
Metaphysics Research Lab, Center for the Study of Language; Information,
https://plato.stanford.edu/archives/sum2007/entries/frege-logic/.
Zalta, Edward N. 2008a.
“Gottlob Frege.” in The Stanford Encyclopedia of Philosophy.
Stanford, California: The Metaphysics Research Lab, Center for the Study
of Language; Information, https://plato.stanford.edu/archives/spr2008/entries/frege/.
Zalta, Edward N. 2008b. “Frege’s Logic, Theorem, and Foundations for
Arithmetic.” in The Stanford
Encyclopedia of Philosophy. Stanford, California: The
Metaphysics Research Lab, Center for the Study of Language; Information,
https://plato.stanford.edu/archives/fall2008/entries/frege-logic/.
Zalta, Edward N. 2009a. “Reply to Ebert and Rossberg
(2009).” in Proceedings of
the 31st International Wittgenstein Symposium: Reduction – Abstraction –
Analysis, edited by Alexander Hieke and Hannes Leitgeb, pp. 311–322. Publications of the Austrian Ludwig Wittgenstein Society
(new series) n. 11. Heusenstamm b. Frankfurt: Ontos Verlag.
Zalta, Edward N. 2009b. “Frege’s Logic, Theorem, and Foundations for
Arithmetic.” in The Stanford
Encyclopedia of Philosophy. Stanford, California: The
Metaphysics Research Lab, Center for the Study of Language; Information,
https://plato.stanford.edu/archives/sum2009/entries/frege-logic/.
Zalta, Edward N. 2010. “Frege’s Logic, Theorem, and Foundations for
Arithmetic.” in The Stanford
Encyclopedia of Philosophy. Stanford, California: The
Metaphysics Research Lab, Center for the Study of Language; Information,
https://plato.stanford.edu/archives/sum2010/entries/frege-logic/.
Zalta, Edward N. 2012.
“Gottlob Frege.” in The Stanford Encyclopedia of Philosophy.
Stanford, California: The Metaphysics Research Lab, Center for the Study
of Language; Information, https://plato.stanford.edu/archives/win2012/entries/frege/.
Zalta, Edward N. 2013. “Frege’s Theorem and Foundations for
Arithmetic.” in The Stanford
Encyclopedia of Philosophy. Stanford, California: The
Metaphysics Research Lab, Center for the Study of Language; Information,
https://plato.stanford.edu/archives/fall2013/entries/frege-theorem/.
Zalta, Edward N. 2014. “The Tarski T-Schema is a Tautology
(Literally).” Analysis 74(1): 5–11, doi:10.1093/analys/ant099.
Zalta, Edward N. 2015.
“Gottlob Frege.” in The Stanford Encyclopedia of Philosophy.
Stanford, California: The Metaphysics Research Lab, Center for the Study
of Language; Information, https://plato.stanford.edu/archives/fall2015/entries/frege/.
Zalta, Edward N. 2017. “Frege’s Theorem and Foundations for
Arithmetic.” in The Stanford
Encyclopedia of Philosophy. Stanford, California: The
Metaphysics Research Lab, Center for the Study of Language; Information,
https://plato.stanford.edu/archives/spr2017/entries/frege-theorem/.
Zalta, Edward N. 2018. “Frege’s Theorem and Foundations for
Arithmetic.” in The Stanford
Encyclopedia of Philosophy. Stanford, California: The
Metaphysics Research Lab, Center for the Study of Language; Information,
https://plato.stanford.edu/archives/fall2018/entries/frege-theorem/.
Zalta, Edward N. 2019.
“Gottlob Frege.” in The Stanford Encyclopedia of Philosophy.
Stanford, California: The Metaphysics Research Lab, Center for the Study
of Language; Information, https://plato.stanford.edu/archives/win2019/entries/frege/.
Zalta, Edward N. 2020. “Typed
Object Theory.” in Abstract
Objects: For and Against, edited by José L. Falguera and Concha Martı́nez-Vidal, pp. 59–88. Synthese
Library n. 422. Cham: Springer, doi:10.1007/978-3-030-38242-1_4.
Zalta, Edward N. 2021. “Frege’s Theorem and Foundations for
Arithmetic.” in The Stanford
Encyclopedia of Philosophy. Stanford, California: The
Metaphysics Research Lab, Center for the Study of Language; Information,
https://plato.stanford.edu/archives/fall2021/entries/frege-theorem/.
Zalta, Edward N. 2022a. “In Defense of Relations.”
Dialectica 76(2). Special issue “The Metaphysics of
Relational States,” guest editor Jan Plate, doi:10.48106/dial.v76.i2.07.
Zalta, Edward N. 2022b.
“Gottlob Frege.” in The Stanford Encyclopedia of Philosophy.
Stanford, California: The Metaphysics Research Lab, Center for the Study
of Language; Information, https://plato.stanford.edu/archives/spr2022/entries/frege/.
Zalta, Edward N. 2023. “Frege’s Theorem and Foundations for
Arithmetic.” in The Stanford
Encyclopedia of Philosophy. Stanford, California: The
Metaphysics Research Lab, Center for the Study of Language; Information,
https://plato.stanford.edu/archives/fall2023/entries/frege-theorem/.
Zalta, Edward N. 2024.
“Principia Metaphysica.” Unpublished
manuscript, dated February 6, 2024, https://mally.stanford.edu/principia.pdf.
Zalta, Edward N., Allen, Colin and Nodelman, Uri. 1995. “Turing
Machine.” in The Stanford
Encyclopedia of Philosophy. Stanford, California: The
Metaphysics Research Lab, Center for the Study of Language; Information,
https://plato.stanford.edu/archives/fall1997/entries/turing-machine/.
Zalta, Edward N., Allen, Colin and Nodelman, Uri. 2003. “Turing
Machine.” in The Stanford
Encyclopedia of Philosophy. Stanford, California: The
Metaphysics Research Lab, Center for the Study of Language; Information,
https://plato.stanford.edu/archives/sum2003/entries/turing-machine/.
Zalta, Edward N. and Colyvan, Mark. 1999. “Mathematics: truth and fiction?”
Philosophia Mathematica 7(3): 336–349.
Further References
Ebert, Philip A. and Rossberg, Marcus. 2009. “Ed Zalta’s Version of Neo-Logicism – a Friendly Letter of
Complaint.” in Proceedings of the
31st International Wittgenstein Symposium: Reduction – Abstraction –
Analysis, edited by Alexander Hieke and Hannes Leitgeb, pp. 305–310. Publications of the Austrian Ludwig Wittgenstein Society
(new series) n. 11. Heusenstamm b. Frankfurt: Ontos Verlag.