Kein Profilbild | No profile picture | Utilisateur n'as pas d'image
https://philosophie.ch/profil/zalta

Edward N. Zalta (zalta)

Bibliography

    Anderson, David James and Zalta, Edward N. 2004. Frege, Boolos, and Logical Objects.” The Journal of Philosophical Logic 33(1): 1–26.
    Bueno, Otávio, Menzel, Christopher and Zalta, Edward N. 2014. Worlds and Propositions Set Free.” Erkenntnis 79(4): 797–820, doi:10.1007/s10670-013-9565-x.
    Bueno, Otávio and Zalta, Edward N. 2005. A Nominalist’s Dilemma and its Solution.” Philosophia Mathematica 13(3): 294–307.
    Fitelson, Branden and Zalta, Edward N. 2007. Steps toward a Computational Metaphysics.” The Journal of Philosophical Logic 36(2): 227–247.
    Linsky, Bernard and Zalta, Edward N. 1991. Is Lewis a Meinongian? Australasian Journal of Philosophy 69: 438–453.
    Linsky, Bernard and Zalta, Edward N. 1994. In Defense of the Simplest Quantified Modal Logic.” in Philosophical Perspectives 8: Logic and Language, edited by James E. Tomberlin, pp. 431–458. Oxford: Blackwell Publishers.
    Linsky, Bernard and Zalta, Edward N. 1995. Naturalized Platonism versus Platonized Naturalism.” The Journal of Philosophy 92(10): 525–555, doi:10.2307/2940786.
    Linsky, Bernard and Zalta, Edward N. 2006. What is neologicism? The Bulletin of Symbolic Logic 12: 60–99.
    McMichael, Alan and Zalta, Edward N. 1980. An Alternative Theory of Nonexistent Objects.” The Journal of Philosophical Logic 9(2): 297–313.
    Menzel, Christopher and Zalta, Edward N. 2014. The Fundamental Theorem of World Theory.” The Journal of Philosophical Logic 43(2): 333–363, doi:10.1007/s10992-012-9265-z.
    Nelson, Michael and Zalta, Edward N. 2009. Bennett and ‘Proxy Actualism’.” Philosophical Studies 142(2): 277–292.
    Nelson, Michael and Zalta, Edward N. 2012. A Defense of Contingent Logical Truths.” Philosophical Studies 157(1): 153–162.
    Nodelman, Uri and Zalta, Edward N. 2014. Foundations for Mathematical Structuralism.” Mind 123(489): 39–78, doi:10.1093/mind/fzu003.
    Oppenheimer, Paul E. and Zalta, Edward N. 1991. On the Logic of the Ontological Argument.” in Philosophical Perspectives 5: Philosophy of Religion, edited by James E. Tomberlin, pp. 509–529. Atascadero, California: Ridgeview Publishing Co.
    Pelletier, Francis Jeffry and Zalta, Edward N. 2000. How to Say Goodbye to the Third Man.” Noûs 34(2): 165–202.
    Zalta, Edward N. 1982. Meinongian Type Theory and Its Applications.” Studia Logica: An International Journal for Symbolic Logic 41(2–3): 297–307.
    Zalta, Edward N. 1983. Abstract Objects: An Introduction to Axiomatic Metaphysics. Synthese Library n. 160. Dordrecht: D. Reidel Publishing Co., doi:10.1007/978-94-009-6980-3.
    Zalta, Edward N. 1985. Lambert, Mally and the Principle of Independence.” Grazer Philosophische Studien 25–26: 447–459. “Non-Existence and Predication,” ed. by Rudolf Haller.
    Zalta, Edward N. 1987. On the Structural Similarities Between Worlds and Times.” Philosophical Studies 51: 213–239.
    Zalta, Edward N. 1988a. Intensional Logic and the Metaphysics of Intentionality. Cambridge, Massachusetts: The MIT Press.
    Zalta, Edward N. 1988b. A Comparison of Two Intensional Logics.” Linguistics and Philosophy 11(1): 59–89.
    Zalta, Edward N. 1988c. Logical and Analytic Truths That are Not Necessary.” The Journal of Philosophy 85(2): 57–74.
    Zalta, Edward N. 1989. Singular Propositions, Abstract Constituents, and Propositional Attitudes.” in Themes from Kaplan, edited by Joseph Almog, John R. Perry, and Howard K. Wettstein, pp. 455–479. Oxford: Oxford University Press.
    Zalta, Edward N. 1991a. A Theory of Situations.” in Situation Theory and Its Applications, Volume 2, volume 2, edited by Jon K. Barwise, Jean Mark Gawron, Gordon D. Plotkin, and Syun Tutiya, pp. 81–112. Stanford, California: CSLI Publications.
    Zalta, Edward N. 1991b. Metaphysics VI: Systematic Metaphysics.” in Handbook of Metaphysics and Ontology, edited by Hans Burkhardt and Barry Smith. Analytica: Investigations in Logic, Ontology, and the Philosophy of Language n. 2. München: Philosophia Verlag.
    Zalta, Edward N. 1993a. Twenty-Five Basic Theorems in Situation and World Theory.” The Journal of Philosophical Logic 22(4): 385–428, doi:10.1007/bf01052533.
    Zalta, Edward N. 1993b. Replies to the Critics.” Philosophical Studies 69(2–3): 231–242.
    Zalta, Edward N. 1993c. A Philosophical Conception of Propositional Modal Logic.” Philosophical Topics 21(2): 263–263.
    Zalta, Edward N. 1995a. Two (Related) World Views.” Noûs 29(2): 189–211.
    Zalta, Edward N. 1995b. Gottlob Frege.” in The Stanford Encyclopedia of Philosophy. Stanford, California: The Metaphysics Research Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/fall1997/entries/frege/.
    Zalta, Edward N. 1995c. Basic Concepts in Modal Logic.” Unpublished manuscript.
    Zalta, Edward N. 1996. In Defense of the Contingently Non-Concrete.” Philosophical Studies 84: 283–294.
    Zalta, Edward N. 1997. A Classically-Based Theory of Impossible Worlds.” Notre Dame Journal of Formal Logic 38: 640–660.
    Zalta, Edward N. 1998. Frege’s Logic, Theorem, and Foundations for Arithmetic.” in The Stanford Encyclopedia of Philosophy. Stanford, California: The Metaphysics Research Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/sum1998/entries/frege-logic/.
    Zalta, Edward N. 1999. Natural Numbers and Natural Cardinals as Abstract Objects: A Partial Reconstruction of Frege’s Grundgesetze in Object Theory.” The Journal of Philosophical Logic 28(6): 619–660.
    Zalta, Edward N. 2000a. A (Leibnizian) theory of concepts.” in Philosophie der Neuzeit: From Descartes to Kant, edited by Uwe Meixner and Albert Newen, pp. 137–184. Logical Analysis and History of Philosophy n. 3. Paderborn: Mentis Verlag.
    Zalta, Edward N. 2000b. Neo-Logicism? An Ontological Reduction of Mathematics to Metaphysics.” Erkenntnis 53: 219–265.
    Zalta, Edward N. 2000c. The Road Between Pretense Theory and Abstract Object Theory.” in Empty Names, Fiction and the Puzzles of Non-Existence, edited by Anthony Everett and Thomas Hofweber, pp. 117–148. CSLI Lecture Notes n. 108. Stanford, California: CSLI Publications.
    Zalta, Edward N. 2001a. Fregean Senses, Modes of Presentation, and Concepts.” in Philosophical Perspectives 15: Metaphysics, edited by James E. Tomberlin, pp. 335–359. Oxford: Blackwell Publishers.
    Zalta, Edward N. 2001b. Frege’s Logic, Theorem, and Foundations for Arithmetic.” in The Stanford Encyclopedia of Philosophy. Stanford, California: The Metaphysics Research Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/sum2001/entries/frege-logic/.
    Zalta, Edward N. 2002. A Common Ground and Some Surprising Connections.” The Southern Journal of Philosophy 40.
    Zalta, Edward N. 2003a. Referring to Fictional Characters.” Dialectica 57(2): 243–254.
    Zalta, Edward N. 2003b. Frege’s Logic, Theorem, and Foundations for Arithmetic.” in The Stanford Encyclopedia of Philosophy. Stanford, California: The Metaphysics Research Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/win2003/entries/frege-logic/.
    Zalta, Edward N. 2004a. In Defense of the Law of Non-Contradiction.” in The Law of Non-Contradiction: New Philosophical Essays, edited by Graham Priest, J. C. Beall, and Bradley Armour-Garb, pp. 418–435. Oxford: Oxford University Press, doi:10.1093/acprof:oso/9780199265176.001.0001.
    Zalta, Edward N. 2004b. Frege’s Logic, Theorem, and Foundations for Arithmetic.” in The Stanford Encyclopedia of Philosophy. Stanford, California: The Metaphysics Research Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/fall2004/entries/frege-logic/.
    Zalta, Edward N. 2004c. Gottlob Frege.” in The Stanford Encyclopedia of Philosophy. Stanford, California: The Metaphysics Research Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/spr2004/entries/frege/.
    Zalta, Edward N. 2005a. Frege’s Logic, Theorem, and Foundations for Arithmetic.” in The Stanford Encyclopedia of Philosophy. Stanford, California: The Metaphysics Research Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/sum2005/entries/frege-logic/.
    Zalta, Edward N. 2005b. Gottlob Frege.” in The Stanford Encyclopedia of Philosophy. Stanford, California: The Metaphysics Research Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/spr2005/entries/frege/.
    Zalta, Edward N. 2006a. Deriving and Validating Kripkean Claims Using the Theory of Abstract Objects.” Noûs 40(4): 591–622, doi:10.1111/j.1468-0068.2006.00626.x.
    Zalta, Edward N. 2006b. Essence and Modality.” Mind 115(459): 659–693.
    Zalta, Edward N. 2006c. Frege’s Logic, Theorem, and Foundations for Arithmetic.” in The Stanford Encyclopedia of Philosophy. Stanford, California: The Metaphysics Research Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/sum2006/entries/frege-logic/.
    Zalta, Edward N. 2007. Frege’s Logic, Theorem, and Foundations for Arithmetic.” in The Stanford Encyclopedia of Philosophy. Stanford, California: The Metaphysics Research Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/sum2007/entries/frege-logic/.
    Zalta, Edward N. 2008a. Gottlob Frege.” in The Stanford Encyclopedia of Philosophy. Stanford, California: The Metaphysics Research Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/spr2008/entries/frege/.
    Zalta, Edward N. 2008b. Frege’s Logic, Theorem, and Foundations for Arithmetic.” in The Stanford Encyclopedia of Philosophy. Stanford, California: The Metaphysics Research Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/fall2008/entries/frege-logic/.
    Zalta, Edward N. 2009a. Reply to Ebert and Rossberg (2009).” in Proceedings of the 31st International Wittgenstein Symposium: Reduction – Abstraction – Analysis, edited by Alexander Hieke and Hannes Leitgeb, pp. 311–322. Publications of the Austrian Ludwig Wittgenstein Society (new series) n. 11. Heusenstamm b. Frankfurt: Ontos Verlag.
    Zalta, Edward N. 2009b. Frege’s Logic, Theorem, and Foundations for Arithmetic.” in The Stanford Encyclopedia of Philosophy. Stanford, California: The Metaphysics Research Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/sum2009/entries/frege-logic/.
    Zalta, Edward N. 2010. Frege’s Logic, Theorem, and Foundations for Arithmetic.” in The Stanford Encyclopedia of Philosophy. Stanford, California: The Metaphysics Research Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/sum2010/entries/frege-logic/.
    Zalta, Edward N. 2012. Gottlob Frege.” in The Stanford Encyclopedia of Philosophy. Stanford, California: The Metaphysics Research Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/win2012/entries/frege/.
    Zalta, Edward N. 2013. Frege’s Theorem and Foundations for Arithmetic.” in The Stanford Encyclopedia of Philosophy. Stanford, California: The Metaphysics Research Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/fall2013/entries/frege-theorem/.
    Zalta, Edward N. 2014. The Tarski T-Schema is a Tautology (Literally).” Analysis 74(1): 5–11, doi:10.1093/analys/ant099.
    Zalta, Edward N. 2015. Gottlob Frege.” in The Stanford Encyclopedia of Philosophy. Stanford, California: The Metaphysics Research Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/fall2015/entries/frege/.
    Zalta, Edward N. 2017. Frege’s Theorem and Foundations for Arithmetic.” in The Stanford Encyclopedia of Philosophy. Stanford, California: The Metaphysics Research Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/spr2017/entries/frege-theorem/.
    Zalta, Edward N. 2018. Frege’s Theorem and Foundations for Arithmetic.” in The Stanford Encyclopedia of Philosophy. Stanford, California: The Metaphysics Research Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/fall2018/entries/frege-theorem/.
    Zalta, Edward N. 2019. Gottlob Frege.” in The Stanford Encyclopedia of Philosophy. Stanford, California: The Metaphysics Research Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/win2019/entries/frege/.
    Zalta, Edward N. 2020. Typed Object Theory.” in Abstract Objects: For and Against, edited by José L. Falguera and Concha Martı́nez-Vidal, pp. 59–88. Synthese Library n. 422. Cham: Springer, doi:10.1007/978-3-030-38242-1_4.
    Zalta, Edward N. 2021. Frege’s Theorem and Foundations for Arithmetic.” in The Stanford Encyclopedia of Philosophy. Stanford, California: The Metaphysics Research Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/fall2021/entries/frege-theorem/.
    Zalta, Edward N. 2022a. In Defense of Relations.” Dialectica 76(2). Special issue “The Metaphysics of Relational States,” guest editor Jan Plate, doi:10.48106/dial.v76.i2.07.
    Zalta, Edward N. 2022b. Gottlob Frege.” in The Stanford Encyclopedia of Philosophy. Stanford, California: The Metaphysics Research Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/spr2022/entries/frege/.
    Zalta, Edward N. 2023. Frege’s Theorem and Foundations for Arithmetic.” in The Stanford Encyclopedia of Philosophy. Stanford, California: The Metaphysics Research Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/fall2023/entries/frege-theorem/.
    Zalta, Edward N. 2024. Principia Metaphysica.” Unpublished manuscript, dated February 6, 2024, https://mally.stanford.edu/principia.pdf.
    Zalta, Edward N., Allen, Colin and Nodelman, Uri. 1995. Turing Machine.” in The Stanford Encyclopedia of Philosophy. Stanford, California: The Metaphysics Research Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/fall1997/entries/turing-machine/.
    Zalta, Edward N., Allen, Colin and Nodelman, Uri. 2003. Turing Machine.” in The Stanford Encyclopedia of Philosophy. Stanford, California: The Metaphysics Research Lab, Center for the Study of Language; Information, https://plato.stanford.edu/archives/sum2003/entries/turing-machine/.
    Zalta, Edward N. and Colyvan, Mark. 1999. Mathematics: truth and fiction? Philosophia Mathematica 7(3): 336–349.

Further References

    Ebert, Philip A. and Rossberg, Marcus. 2009. Ed Zalta’s Version of Neo-Logicism – a Friendly Letter of Complaint.” in Proceedings of the 31st International Wittgenstein Symposium: Reduction – Abstraction – Analysis, edited by Alexander Hieke and Hannes Leitgeb, pp. 305–310. Publications of the Austrian Ludwig Wittgenstein Society (new series) n. 11. Heusenstamm b. Frankfurt: Ontos Verlag.